楊笛一新作:社恐有救了,AI大模型一對一陪聊,幫i人變成e人
机器之心發表於2024-04-09
在社交活動中,大語言模型既可以是你的合作伙伴(partner),也可以成為你的導師(mentor)。
在人類的社交活動中,為了更有效地在工作和生活中與他人溝通,需要一定的社交技能,比如解決衝突。然而,社交技能的練習環境對於大多數人來說通常是遙不可及的。特別是由專家訓練這些技能時,往往耗時、投入高且可用性有限。現有的練習和反饋機制很大程度上依賴專家監督,使訓練難以擴充套件。此外,經過專業培訓的教練也缺乏,而大多數可以提供定製化反饋的教練無法幫助大量有需要的人。近日,在由史丹佛助理教授楊笛一為共同一作的論文《Social Skill Training with Large Language Models》中,研究者認為,藉助大語言模型可以使得社交技能訓練變得更容易、更安全、更有吸引力,並在現實、虛擬練習空間中提供量身定製的反饋。論文地址:https://arxiv.org/pdf/2404.04204.pdf第一個訓練框架是 AI Partner,它可以透過模擬練習為體驗式訓練提供可擴充套件的解決方案。此前已經有研究表明,人類角色扮演可以有效地教授溝通、合作和領導技能。與 on-the-job 訓練相比,模擬可以讓學習者承擔更少的風險和機會成本。而透過模擬,AI Partner 將減少進入專業領域的社會經濟障礙。第二個補充訓練框架是 AI Mentor, 它將根據領域專業知識和事實知識提供個性化反饋。這兩個訓練框架(合稱為 APAM)都可以將體驗式學習與現實練習、定製反饋相結合。研究者呼籲透過跨學科創新來解決 APAM 的廣泛影響。論文作者楊笛一表示:「學習社交技能對大多數人來說是遙不可及的,我們如何才能使社交技能訓練變得更容易實現?基於此,我們推出 APAM,其利用 LLM 透過現實實踐和量身定製的反饋進行社交技能訓練!」她接著表示:「在 APAM 中,當使用者想要學習一項新的社交技能時,AI Partner 可以幫助他們透過模擬對話來練習相關場景。AI Mentor 可以在模擬的關鍵時刻提供基於知識的反饋。」該研究提出了一個通用框架專門用於社交技能訓練,該框架包括 AI Partner 和 AI Mentor(兩者簡稱 APAM),並且這兩者至關重要。當使用者想要學習一項新的社交技能時,AI Partner 可以透過模擬對話幫助他們練習相關場景。AI Mentor 可以在模擬的關鍵時刻提供基於知識的反饋。然而,構建和部署 AI Partner 並非易事,比如很難保持模擬人物的風格、行為和情感特徵的一致性。而開發 AI Mentor 在很大程度上依賴於領域專業知識、情境感知和反饋效率等因素。為了解決上述問題,研究者提出透過 LLM 進行社交技能訓練的通用方法,分四個步驟完成:- 設計一個 AI partner 來模擬對話,讓學習者(即使用者)接觸目標過程,進行練習;
研究者表示,APAM 框架的理想受眾是初學者,但是有經驗的人也可以使用 APAM 系統來重新整理他們的知識。APAM 可以在許多領域提高學習者的技能,表 1 列舉了一些應用場景,例如如何傾聽、心理健康諮詢等。不過 APAM 框架不僅限於這些典型的例子,論文第 6 節有更多的介紹。雖然 LLM 作為社交技能訓練工具潛力巨大,因為它們可以生成連貫且自然的文字。然而,這種靈活性往往伴隨著有限的可控性。出於安全考慮, APAM 框架為如何應用 AI 提供了一系列措施,他們將使用過程分解為一個連續體:AI Partner 連續體以及 AI Mentor 連續體,每個連續體都由三個模型完成(如圖 1 所示)。AI partner 和 AI mentor 的評估是一個重大挑戰,基於 APAM 的工具涉及複雜的計算系統以及與不同需求和背景的使用者的互動。為了將這些訓練工具開發為一個領域,評估措施需要超越自然語言處理中傳統的指標,轉而採用來自多個相關領域和利益相關者的方案。納入多學科視角將有助於評估此類系統的實證效能、基於使用者角度的可用性以及對使用者和社群的長期影響。目前,文字生成的研究主要集中在內在評估上,即透過預定義的規則或互動來評估輸出的質量。在下表 2 中,研究者主要劃分為全自動評估和使用者驅動評估。基於參考的指標(如困惑度或 Kullback-Leibler 散度)通常用於系統質量自動評估,它們既簡單又允許透過演示對所需行為進行豐富的定義。表 2 詳細列出了以往工作中適用於 APAM 系統的內在和外在評估程式。目前,自然語言處理從業者主要關注對系統的內在評估。本文中,研究者強調使用既定的教育成果衡量標準來評估 APAM 系統的重要性。