深入理解Python生成器(Generator)

pythontab發表於2016-07-24

我們可以透過列表生成式簡單直接地建立一個列表,但是受到記憶體限制,列表容量肯定是有限的。而且,建立一個包含100萬個元素的列表,不僅佔用很大的儲存空間,而且如果我們僅僅需要訪問前面幾個元素,那後面絕大多數元素佔用的空間都白白浪費了。

所以,如果列表元素可以按照某種演算法推算出來,那我們是否可以在迴圈的過程中不斷推算出後續的元素呢?這樣就不必建立完整的list,從而節省大量的空間。在Python中,這種一邊迴圈一邊計算的機制,稱為生成器(Generator)。


要建立一個generator,有很多種方法。第一種方法很簡單,只要把一個列表生成式的[]改成(),就建立了一個generator:

>>> mylist = [ x for x in range(1, 10)]
>>> mylist
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> gen = (x for x in range(1,10))
>>> gen
<generator object <genexpr> at 0x7f1d7fd0f5a0>

建立mylist和gen的區別僅在於最外層的[]和(),mylist是一個list,而gen是一個generator(生成器)。

我們可以直接列印出list的每一個元素,但我們怎麼列印出generator的每一個元素呢?

如果要一個一個列印出來,可以透過generator的next()方法:

>>> gen.next()
1
>>> gen.next()
2
>>> gen.next()
3
...
>>> gen.next()
9
>>> gen.next()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

我們講過,generator儲存的是演算法,每次呼叫next(),就計算出下一個元素的值,直到計算到最後一個元素,沒有更多的元素時,丟擲StopIteration的錯誤。


其實我們可以使用for迴圈來代替next()方式, 這樣才更符合高效的程式設計思路:

>>> gen = ( x for x in range(1, 10))
>>> for num in gen:
...     print num
... 
1
2
3
4
5
6
7
8
9


generator非常強大。如果推算的演算法比較複雜,用類似列表生成式的for迴圈無法實現的時候,還可以用函式來實現。


比如,著名的斐波拉契數列(Fibonacci),除第一個和第二個數外,任意一個數都可由前兩個數相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契數列用列表生成式寫不出來,但是,用函式把它列印出來卻很容易:

def fib(max):
    n = 0 
    a, b = 0, 1
    while n < max:
        print b
        a, b = b, a + b
        n = n + 1

上面的函式可以輸出斐波那契數列的前N個數:

>>> fib(6)
1
1
2
3
5
8

仔細觀察,可以看出,fib函式實際上是定義了斐波拉契數列的推算規則,可以從第一個元素開始,推算出後續任意的元素,這種邏輯其實非常類似generator。


也就是說,上面的函式和generator僅一步之遙。要把fib函式變成generator,只需要把print b改為yield b就可以了:

def fib(max):
    n = 0 
    a, b = 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1

這就是定義generator的另一種方法。如果一個函式定義中包含yield關鍵字,那麼這個函式就不再是一個普通函式,而是一個generator:

>>> fib(6)
<generator object fib at 0x104feaaa0>

這裡,最難理解的就是generator和函式的執行流程不一樣。函式是順序執行,遇到return語句或者最後一行函式語句就返回。而變成generator的函式,在每次呼叫next()的時候執行,遇到yield語句返回,再次執行時從上次返回的yield語句處繼續執行。


舉個簡單的例子,定義一個generator,依次返回數字1,3,5:

>>> def odd():
...     print 'step 1'
...     yield 1
...     print 'step 2'
...     yield 3
...     print 'step 3'
...     yield 5
...
>>> o = odd()
>>> o.next()
step 1
1
>>> o.next()
step 2
3
>>> o.next()
step 3
5
>>> o.next()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

可以看到,odd不是普通函式,而是generator,在執行過程中,遇到yield就中斷,下次又繼續執行。執行3次yield後,已經沒有yield可以執行了,所以,第4次呼叫next()就報錯。


回到fib的例子,我們在迴圈過程中不斷呼叫yield,就會不斷中斷。當然要給迴圈設定一個條件來退出迴圈,不然就會產生一個無限數列出來。


同樣的,把函式改成generator後,我們基本上從來不會用next()來呼叫它,而是直接使用for迴圈來迭代:

>>> for n in fib(6):
...     print n
...
1
1
2
3
5
8

generator是非常強大的工具,在Python中,可以簡單地把列表生成式改成generator,也可以透過函式實現複雜邏輯的generator。

要理解generator的工作原理,它是在for迴圈的過程中不斷計算出下一個元素,並在適當的條件結束for迴圈。對於函式改成的generator來說,遇到return語句或者執行到函式體最後一行語句,就是結束generator的指令,for迴圈隨之結束。


相關文章