alphago論文使用的圍棋Tromp-Taylor規則

lt發表於2017-12-04

The Logical Rules

Go is played on a 19x19 square grid of points, by two players called Black and White.
Each point on the grid may be colored black, white or empty.
A point P, not colored C, is said to reach C, if there is a path of (vertically or horizontally)
adjacent points of P's color from P to a point of color C.
Clearing a color is the process of emptying all points of that color that don't reach empty.
Starting with an empty grid, the players alternate turns, starting with Black.
A turn is either a pass; or a move that doesn't repeat an earlier grid coloring.
A move consists of coloring an empty point one's own color;
then clearing the opponent color, and then clearing one's own color.
The game ends after two consecutive passes.
A player's score is the number of points of her color, plus the number of empty points that reach only her color.
The player with the higher score at the end of the game is the winner. Equal scores result in a tie.    

原出處:http://tromp.github.io/go.html
有haskell的實現: http://tromp.github.io/go/SimpleGo.hs.txt
中文翻譯:https://tieba.baidu.com/p/5437396471 Tromp-Taylor 規則:

1、圍棋在19x19的棋盤上進行,對戰者稱為黑方和白方;
2、每個交叉點為黑,白,空三種顏色;
3、稱某顏色不為C的點P為“到達C”,若存在一條由全是P點顏色的相鄰點(水平或豎直)構成的從P到某顏色為C的點的路徑;(就是說從P可以一直不變色地走到一個顏色為C的點)
4、將所有不能“到達空”的某種顏色的點染為空,叫做“清除”那種顏色;
5、從空白棋盤開始,雙方輪替“下”,黑方起始;
6、“下”要麼是什麼也不走,要麼是使得全域性不和以往重複的一次“落子”;
7、“落子”由如下步驟組成:首先將一個空點染為己方顏色,然後“清除”對方顏色,再然後“清除”己方顏色;
8、當出現兩次連續的“不走”時,棋局結束;
9、某一方的點數等於此方顏色的點數加上只“到達”這一顏色的空色點數;
10、點數高的一方獲勝。雙方點數相等為平局。
這一規則由 John Tromp 和 Bill Taylor 創制,也被稱為圍棋的邏輯規則,試圖儘量簡化規則,並消除歧義。

相關文章