前面,我們已經學習了ArrayList。接下來,我們以ArrayList為例,對Iterator的fail-fast機制進行了解。內容包括::
1 fail-fast簡介
2 fail-fast示例
3 fail-fast解決辦法
4 fail-fast原理
5 解決fail-fast的原理
出處:http://www.cnblogs.com/skywang12345/p/3308762.html
1 fail-fast簡介
fail-fast 機制是java集合(Collection)中的一種錯誤機制。當多個執行緒對同一個集合的內容進行操作時,就可能會產生fail-fast事件。
例如:當某一個執行緒A通過iterator去遍歷某集合的過程中,若該集合的內容被其他執行緒所改變了;那麼執行緒A訪問集合時,就會丟擲ConcurrentModificationException異常,產生fail-fast事件。
在詳細介紹fail-fast機制的原理之前,先通過一個示例來認識fail-fast。
import java.util.*; import java.util.concurrent.*; /* * @desc java集合中Fast-Fail的測試程式。 * * fast-fail事件產生的條件:當多個執行緒對Collection進行操作時,若其中某一個執行緒通過iterator去遍歷集合時,該集合的內容被其他執行緒所改變;則會丟擲ConcurrentModificationException異常。 * fast-fail解決辦法:通過util.concurrent集合包下的相應類去處理,則不會產生fast-fail事件。 * * 本例中,分別測試ArrayList和CopyOnWriteArrayList這兩種情況。ArrayList會產生fast-fail事件,而CopyOnWriteArrayList不會產生fast-fail事件。 * (01) 使用ArrayList時,會產生fast-fail事件,丟擲ConcurrentModificationException異常;定義如下: * private static List<String> list = new ArrayList<String>(); * (02) 使用時CopyOnWriteArrayList,不會產生fast-fail事件;定義如下: * private static List<String> list = new CopyOnWriteArrayList<String>(); * * @author skywang */ public class FastFailTest { private static List<String> list = new ArrayList<String>(); //private static List<String> list = new CopyOnWriteArrayList<String>(); public static void main(String[] args) { // 同時啟動兩個執行緒對list進行操作! new ThreadOne().start(); new ThreadTwo().start(); } private static void printAll() { System.out.println(""); String value = null; Iterator iter = list.iterator(); while(iter.hasNext()) { value = (String)iter.next(); System.out.print(value+", "); } } /** * 向list中依次新增0,1,2,3,4,5,每新增一個數之後,就通過printAll()遍歷整個list */ private static class ThreadOne extends Thread { public void run() { int i = 0; while (i<6) { list.add(String.valueOf(i)); printAll(); i++; } } } /** * 向list中依次新增10,11,12,13,14,15,每新增一個數之後,就通過printAll()遍歷整個list */ private static class ThreadTwo extends Thread { public void run() { int i = 10; while (i<16) { list.add(String.valueOf(i)); printAll(); i++; } } } }
執行結果:
執行該程式碼,丟擲異常java.util.ConcurrentModificationException!即,產生fail-fast事件!
結果說明:
(01) FastFailTest中通過 new ThreadOne().start() 和 new ThreadTwo().start() 同時啟動兩個執行緒去操作list。
ThreadOne執行緒:向list中依次新增0,1,2,3,4,5。每新增一個數之後,就通過printAll()遍歷整個list。
ThreadTwo執行緒:向list中依次新增10,11,12,13,14,15。每新增一個數之後,就通過printAll()遍歷整個list。
(02) 當某一個執行緒遍歷list的過程中,list的內容被另外一個執行緒所改變了;就會丟擲ConcurrentModificationException異常,產生fail-fast事件。
fail-fast機制,是一種錯誤檢測機制。它只能被用來檢測錯誤,因為JDK並不保證fail-fast機制一定會發生。若在多執行緒環境下使用fail-fast機制的集合,建議使用“java.util.concurrent包下的類”去取代“java.util包下的類”。
所以,本例中只需要將ArrayList替換成java.util.concurrent包下對應的類即可。
即,將程式碼
private static List<String> list = new ArrayList<String>();
替換為
private static List<String> list = new CopyOnWriteArrayList<String>();
則可以解決該辦法。
3 fail-fast解決辦法
4 fail-fast原理
產生fail-fast事件,是通過丟擲ConcurrentModificationException異常來觸發的。
那麼,ArrayList是如何丟擲ConcurrentModificationException異常的呢?
我們知道,ConcurrentModificationException是在操作Iterator時丟擲的異常。我們先看看Iterator的原始碼。ArrayList的Iterator是在父類AbstractList.java中實現的。程式碼如下:
package java.util; public abstract class AbstractList<E> extends AbstractCollection<E> implements List<E> { ... // AbstractList中唯一的屬性 // 用來記錄List修改的次數:每修改一次(新增/刪除等操作),將modCount+1 protected transient int modCount = 0; // 返回List對應迭代器。實際上,是返回Itr物件。 public Iterator<E> iterator() { return new Itr(); } // Itr是Iterator(迭代器)的實現類 private class Itr implements Iterator<E> { int cursor = 0; int lastRet = -1; // 修改數的記錄值。 // 每次新建Itr()物件時,都會儲存新建該物件時對應的modCount; // 以後每次遍歷List中的元素的時候,都會比較expectedModCount和modCount是否相等; // 若不相等,則丟擲ConcurrentModificationException異常,產生fail-fast事件。 int expectedModCount = modCount; public boolean hasNext() { return cursor != size(); } public E next() { // 獲取下一個元素之前,都會判斷“新建Itr物件時儲存的modCount”和“當前的modCount”是否相等; // 若不相等,則丟擲ConcurrentModificationException異常,產生fail-fast事件。 checkForComodification(); try { E next = get(cursor); lastRet = cursor++; return next; } catch (IndexOutOfBoundsException e) { checkForComodification(); throw new NoSuchElementException(); } } public void remove() { if (lastRet == -1) throw new IllegalStateException(); checkForComodification(); try { AbstractList.this.remove(lastRet); if (lastRet < cursor) cursor--; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException e) { throw new ConcurrentModificationException(); } } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } ... }
從中,我們可以發現在呼叫 next() 和 remove()時,都會執行 checkForComodification()。若 “modCount 不等於 expectedModCount”,則丟擲ConcurrentModificationException異常,產生fail-fast事件。
要搞明白 fail-fast機制,我們就要需要理解什麼時候“modCount 不等於 expectedModCount”!
從Itr類中,我們知道 expectedModCount 在建立Itr物件時,被賦值為 modCount。通過Itr,我們知道:expectedModCount不可能被修改為不等於 modCount。所以,需要考證的就是modCount何時會被修改。
接下來,我們檢視ArrayList的原始碼,來看看modCount是如何被修改的。
package java.util; public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable { ... // list中容量變化時,對應的同步函式 public void ensureCapacity(int minCapacity) { modCount++; int oldCapacity = elementData.length; if (minCapacity > oldCapacity) { Object oldData[] = elementData; int newCapacity = (oldCapacity * 3)/2 + 1; if (newCapacity < minCapacity) newCapacity = minCapacity; // minCapacity is usually close to size, so this is a win: elementData = Arrays.copyOf(elementData, newCapacity); } } // 新增元素到佇列最後 public boolean add(E e) { // 修改modCount ensureCapacity(size + 1); // Increments modCount!! elementData[size++] = e; return true; } // 新增元素到指定的位置 public void add(int index, E element) { if (index > size || index < 0) throw new IndexOutOfBoundsException( "Index: "+index+", Size: "+size); // 修改modCount ensureCapacity(size+1); // Increments modCount!! System.arraycopy(elementData, index, elementData, index + 1, size - index); elementData[index] = element; size++; } // 新增集合 public boolean addAll(Collection<? extends E> c) { Object[] a = c.toArray(); int numNew = a.length; // 修改modCount ensureCapacity(size + numNew); // Increments modCount System.arraycopy(a, 0, elementData, size, numNew); size += numNew; return numNew != 0; } // 刪除指定位置的元素 public E remove(int index) { RangeCheck(index); // 修改modCount modCount++; E oldValue = (E) elementData[index]; int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // Let gc do its work return oldValue; } // 快速刪除指定位置的元素 private void fastRemove(int index) { // 修改modCount modCount++; int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // Let gc do its work } // 清空集合 public void clear() { // 修改modCount modCount++; // Let gc do its work for (int i = 0; i < size; i++) elementData[i] = null; size = 0; } ... }
從中,我們發現:無論是add()、remove(),還是clear(),只要涉及到修改集合中的元素個數時,都會改變modCount的值。
接下來,我們再系統的梳理一下fail-fast是怎麼產生的。步驟如下:
(01) 新建了一個ArrayList,名稱為arrayList。
(02) 向arrayList中新增內容。
(03) 新建一個“執行緒a”,並在“執行緒a”中通過Iterator反覆的讀取arrayList的值。
(04) 新建一個“執行緒b”,在“執行緒b”中刪除arrayList中的一個“節點A”。
(05) 這時,就會產生有趣的事件了。
在某一時刻,“執行緒a”建立了arrayList的Iterator。此時“節點A”仍然存在於arrayList中,建立arrayList時,expectedModCount = modCount(假設它們此時的值為N)。
在“執行緒a”在遍歷arrayList過程中的某一時刻,“執行緒b”執行了,並且“執行緒b”刪除了arrayList中的“節點A”。“執行緒b”執行remove()進行刪除操作時,在remove()中執行了“modCount++”,此時modCount變成了N+1!
“執行緒a”接著遍歷,當它執行到next()函式時,呼叫checkForComodification()比較“expectedModCount”和“modCount”的大小;而“expectedModCount=N”,“modCount=N+1”,這樣,便丟擲ConcurrentModificationException異常,產生fail-fast事件。
至此,我們就完全瞭解了fail-fast是如何產生的!
即,當多個執行緒對同一個集合進行操作的時候,某執行緒訪問集合的過程中,該集合的內容被其他執行緒所改變(即其它執行緒通過add、remove、clear等方法,改變了modCount的值);這時,就會丟擲ConcurrentModificationException異常,產生fail-fast事件。
5 解決fail-fast的原理
上面,說明了“解決fail-fast機制的辦法”,也知道了“fail-fast產生的根本原因”。接下來,我們再進一步談談java.util.concurrent包中是如何解決fail-fast事件的。
還是以和ArrayList對應的CopyOnWriteArrayList進行說明。我們先看看CopyOnWriteArrayList的原始碼:
package java.util.concurrent; import java.util.*; import java.util.concurrent.locks.*; import sun.misc.Unsafe; public class CopyOnWriteArrayList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable { ... // 返回集合對應的迭代器 public Iterator<E> iterator() { return new COWIterator<E>(getArray(), 0); } ... private static class COWIterator<E> implements ListIterator<E> { private final Object[] snapshot; private int cursor; private COWIterator(Object[] elements, int initialCursor) { cursor = initialCursor; // 新建COWIterator時,將集合中的元素儲存到一個新的拷貝陣列中。 // 這樣,當原始集合的資料改變,拷貝資料中的值也不會變化。 snapshot = elements; } public boolean hasNext() { return cursor < snapshot.length; } public boolean hasPrevious() { return cursor > 0; } public E next() { if (! hasNext()) throw new NoSuchElementException(); return (E) snapshot[cursor++]; } public E previous() { if (! hasPrevious()) throw new NoSuchElementException(); return (E) snapshot[--cursor]; } public int nextIndex() { return cursor; } public int previousIndex() { return cursor-1; } public void remove() { throw new UnsupportedOperationException(); } public void set(E e) { throw new UnsupportedOperationException(); } public void add(E e) { throw new UnsupportedOperationException(); } } ... }
從中,我們可以看出:
(01) 和ArrayList繼承於AbstractList不同,CopyOnWriteArrayList沒有繼承於AbstractList,它僅僅只是實現了List介面。
(02) ArrayList的iterator()函式返回的Iterator是在AbstractList中實現的;而CopyOnWriteArrayList是自己實現Iterator。
(03) ArrayList的Iterator實現類中呼叫next()時,會“呼叫checkForComodification()比較‘expectedModCount’和‘modCount’的大小”;但是,CopyOnWriteArrayList的Iterator實現類中,沒有所謂的checkForComodification(),更不會丟擲ConcurrentModificationException異常!