C/C+語言struct深層探索

weixin_34119545發表於2006-11-15
1. struct的巨大作用
  面對一個人的大型C/C++程式時,只看其對struct的使用情況我們就可以對其編寫者的程式設計經驗進行評估。因為一個大型的C/C++程式,勢必要涉及一些(甚至大量)進行資料組合的結構體,這些結構體可以將原本意義屬於一個整體的資料組合在一起。從某種程度上來說,會不會用struct,怎樣用struct是區別一個開發人員是否具備豐富開發經歷的標誌。

  在網路協議、通訊控制、嵌入式系統的C/C++程式設計中,我們經常要傳送的不是簡單的位元組流(char型陣列),而是多種資料組合起來的一個整體,其表現形式是一個結構體。

  經驗不足的開發人員往往將所有需要傳送的內容依順序儲存在char型陣列中,通過指標偏移的方法傳送網路報文等資訊。這樣做程式設計複雜,易出錯,而且一旦控制方式及通訊協議有所變化,程式就要進行非常細緻的修改。

  一個有經驗的開發者則靈活運用結構體,舉一個例子,假設網路或控制協議中需要傳送三種報文,其格式分別為packetA、packetB、packetC:

struct structA
{
int a;
char b;
};

struct structB
{
char a;
short b;
};

struct structC
{
int a;
char b;
float c;
}
  優秀的程式設計者這樣設計傳送的報文:

struct CommuPacket
{
int iPacketType;  //報文型別標誌
union      //每次傳送的是三種報文中的一種,使用union
{
  struct structA packetA;
  struct structB packetB;
  struct structC packetC;
}
};
  在進行報文傳送時,直接傳送struct CommuPacket一個整體。

  假設傳送函式的原形如下:

// pSendData:傳送位元組流的首地址,iLen:要傳送的長度
Send(char * pSendData, unsigned int  iLen);
傳送方可以直接進行如下呼叫傳送struct CommuPacket的一個例項sendCommuPacket:
Send( (char *)&sendCommuPacket , sizeof(CommuPacket) );
假設接收函式的原形如下:
// pRecvData:傳送位元組流的首地址,iLen:要接收的長度
//返回值:實際接收到的位元組數
unsigned int Recv(char * pRecvData, unsigned int  iLen);
  接收方可以直接進行如下呼叫將接收到的資料儲存在struct CommuPacket的一個例項recvCommuPacket中:

Recv( (char *)&recvCommuPacket , sizeof(CommuPacket) );
  接著判斷報文型別進行相應處理:

switch(recvCommuPacket. iPacketType)
{
    case PACKET_A:
    …    //A類報文處理
    break;
    case PACKET_B:
    …   //B類報文處理
    break;
    case PACKET_C:
    …   //C類報文處理
    break;
}
  以上程式中最值得注意的是

Send( (char *)&sendCommuPacket , sizeof(CommuPacket) );
Recv( (char *)&recvCommuPacket , sizeof(CommuPacket) );
  中的強制型別轉換:(char *)&sendCommuPacket、(char *)&recvCommuPacket,先取地址,再轉化為char型指標,這樣就可以直接利用處理位元組流的函式。

  利用這種強制型別轉化,我們還可以方便程式的編寫,例如要對sendCommuPacket所處記憶體初始化為0,可以這樣呼叫標準庫函式memset():

memset((char *)&sendCommuPacket,0, sizeof(CommuPacket));

2. struct的成員對齊
  Intel、微軟等公司曾經出過一道類似的面試題:

1. #include <iostream.h>

2. #pragma pack(8)
3. struct example1
4. {
5. short a;
6. long b;
7. };

8. struct example2
9. {
10. char c;
11. example1 struct1;
12. short e;    
13. };
14. #pragma pack()

15. int main(int argc, char* argv[])
16. {
17. example2 struct2;

18. cout << sizeof(example1) << endl;
19. cout << sizeof(example2) << endl;
20. cout << (unsigned int)(&struct2.struct1) - (unsigned int)(&struct2)
<< endl;

21. return 0;
22. }
  問程式的輸入結果是什麼?

  答案是:

8
16
4

  不明白?還是不明白?下面一一道來:

2.1 自然對界

  struct是一種複合資料型別,其構成元素既可以是基本資料型別(如int、long、float等)的變數,也可以是一些複合資料型別(如array、struct、union等)的資料單元。對於結構體,編譯器會自動進行成員變數的對齊,以提高運算效率。預設情況下,編譯器為結構體的每個成員按其自然對界(natural alignment)條件分配空間。各個成員按照它們被宣告的順序在記憶體中順序儲存,第一個成員的地址和整個結構的地址相同。

  自然對界(natural alignment)即預設對齊方式,是指按結構體的成員中size最大的成員對齊。

  例如:

struct naturalalign
{
char a;
short b;
char c;
};
  在上述結構體中,size最大的是short,其長度為2位元組,因而結構體中的char成員a、c都以2為單位對齊,sizeof(naturalalign)的結果等於6;

  如果改為:

struct naturalalign
{
char a;
int b;
char c;
};
  其結果顯然為12。

2.2指定對界

  一般地,可以通過下面的方法來改變預設的對界條件:

  · 使用偽指令#pragma pack (n),編譯器將按照n個位元組對齊;
  · 使用偽指令#pragma pack (),取消自定義位元組對齊方式。

  注意:如果#pragma pack (n)中指定的n大於結構體中最大成員的size,則其不起作用,結構體仍然按照size最大的成員進行對界。

  例如:

#pragma pack (n)
struct naturalalign
{
char a;
int b;
char c;
};
#pragma pack ()
  當n為4、8、16時,其對齊方式均一樣,sizeof(naturalalign)的結果都等於12。而當n為2時,其發揮了作用,使得sizeof(naturalalign)的結果為8。

  在VC++ 6.0編譯器中,我們可以指定其對界方式,其操作方式為依次選擇projetct > setting > C/C++選單,在struct member alignment中指定你要的對界方式。

  另外,通過__attribute((aligned (n)))也可以讓所作用的結構體成員對齊在n位元組邊界上,但是它較少被使用,因而不作詳細講解。

2.3 面試題的解答

  至此,我們可以對Intel、微軟的面試題進行全面的解答。

  程式中第2行#pragma pack (8)雖然指定了對界為8,但是由於struct example1中的成員最大size為4(long變數size為4),故struct example1仍然按4位元組對界,struct example1的size為8,即第18行的輸出結果;

  struct example2中包含了struct example1,其本身包含的簡單資料成員的最大size為2(short變數e),但是因為其包含了struct example1,而struct example1中的最大成員size為4,struct example2也應以4對界,#pragma pack (8)中指定的對界對struct example2也不起作用,故19行的輸出結果為16;

  由於struct example2中的成員以4為單位對界,故其char變數c後應補充3個空,其後才是成員struct1的記憶體空間,20行的輸出結果為4。


3. C和C++間struct的深層區別
  在C++語言中struct具有了“類” 的功能,其與關鍵字class的區別在於struct中成員變數和函式的預設訪問許可權為public,而class的為private。

  例如,定義struct類和class類:

struct structA
{
char a;

}
class classB
{
      char a;
      …
}
  則:

struct A a;
a.a = 'a';    //訪問public成員,合法
classB b;
b.a = 'a';    //訪問private成員,不合法
  許多文獻寫到這裡就認為已經給出了C++中struct和class的全部區別,實則不然,另外一點需要注意的是:

  C++中的struct保持了對C中struct的全面相容(這符合C++的初衷——“a better c”),因而,下面的操作是合法的:

//定義struct
struct structA
{
char a;
char b;
int c;
};
structA a = {'a' , 'a' ,1};    //  定義時直接賦初值
  即struct可以在定義的時候直接以{ }對其成員變數賦初值,而class則不能,在經典書目《thinking C++ 2nd edition》中作者對此點進行了強調。

4. struct程式設計注意事項
  看看下面的程式:

1. #include <iostream.h>

2. struct structA
3. {
4. int iMember;
5. char *cMember;
6. };

7. int main(int argc, char* argv[])
8. {
9. structA instant1,instant2;
10.char c = 'a';
    
11. instant1.iMember = 1;
12. instant1.cMember = &c;

13.instant2 = instant1;

14.cout << *(instant1.cMember) << endl;

15.*(instant2.cMember) = 'b';

16. cout << *(instant1.cMember) << endl;

17. return 0;
}
  14行的輸出結果是:a
  16行的輸出結果是:b

  Why?我們在15行對instant2的修改改變了instant1中成員的值!

  原因在於13行的instant2 = instant1賦值語句採用的是變數逐個拷貝,這使得instant1和instant2中的cMember指向了同一片記憶體,因而對instant2的修改也是對instant1的修改。

  在C語言中,當結構體中存在指標型成員時,一定要注意在採用賦值語句時是否將2個例項中的指標型成員指向了同一片記憶體。

  在C++語言中,當結構體中存在指標型成員時,我們需要重寫struct的拷貝建構函式並進行“=”操作符過載。

相關文章