兩個有序陣列的中位數

鄧肯145發表於2018-05-09

There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

如果陣列a的中位數小於陣列b的中位數,那麼整體的中位數只可能出現在a的右區間加上b的左區間之中; 
如果陣列a的中位數大於等於陣列b的中位數,那麼整體的中位數只可能出現在a的左區間加上b的右區間之中。 

關鍵就是利用分治的思想逐漸縮小a的區間和b的區間來找到中位數。

首先假設陣列A和B的元素個數都大於k/2,我們比較A[k/2-1]和B[k/2-1]兩個元素,這兩個元素分別表示A的第k/2小的元素和B的第k/2小的元素。這兩個元素比較共有三種情況:>、<和=。如果A[k/2-1]<B[k/2-1],這表示A[0]到A[k/2-1]的元素都在A和B合併之後的前k小的元素中。換句話說,A[k/2-1]不可能大於兩陣列合並之後的第k小值,所以我們可以將其拋棄。

當A[k/2-1]>B[k/2-1]時存在類似的結論。

當A[k/2-1]=B[k/2-1]時,我們已經找到了第k小的數,也即這個相等的元素,我們將其記為m。由於在A和B中分別有k/2-1個元素小於m,所以m即是第k小的數。(這裡可能有人會有疑問,如果k為奇數,則m不是中位數。這裡是進行了理想化考慮,在實際程式碼中略有不同,是先求k/2,然後利用k-k/2獲得另一個數。)

通過上面的分析,我們即可以採用遞迴的方式實現尋找第k小的數。此外我們還需要考慮幾個邊界條件:

  • 如果A或者B為空,則直接返回B[k-1]或者A[k-1];
  • 如果k為1,我們只需要返回A[0]和B[0]中的較小值;
  • 如果A[k/2-1]=B[k/2-1],返回其中一個;

double findKth(int a[], int m, int b[], int n, int k)  
{  
    //always assume that m is equal or smaller than n  
    if (m > n)  
        return findKth(b, n, a, m, k);  
    if (m == 0)  
        return b[k - 1];  
    if (k == 1)  
        return min(a[0], b[0]);  
    //divide k into two parts  
    int pa = min(k / 2, m), pb = k - pa;  
    if (a[pa - 1] < b[pb - 1])  
        return findKth(a + pa, m - pa, b, n, k - pa);  
    else if (a[pa - 1] > b[pb - 1])  
        return findKth(a, m, b + pb, n - pb, k - pb);  
    else  
        return a[pa - 1];  
}  
  
class Solution  
{  
public:  
    double findMedianSortedArrays(int A[], int m, int B[], int n)  
    {  
        int total = m + n;  
        if (total & 0x1)  
            return findKth(A, m, B, n, total / 2 + 1);  
        else  
            return (findKth(A, m, B, n, total / 2)  
                    + findKth(A, m, B, n, total / 2 + 1)) / 2;  
    }  
}; 

相關文章