Android 熱修復 Tinker 原始碼分析之DexDiff / DexPatch
在上一篇文章中,我們介紹了Android 熱修復 Tinker接入及原始碼淺析,裡面包含了熱修的一些背景知識,從tinker對dex檔案的處理來看,原始碼大體上可以分為3部分閱讀:
- 在應用中對patch的合併與載入,已經在上篇文章中詳細介紹過了Android 熱修復 Tinker接入及原始碼淺析
- 詳細的dex patch,dex diff演算法
- tinker gradle plugin相關知識
tinker有個非常大的亮點就是自研發了一套dex diff、patch相關演算法。本篇文章主要目的就是分析該演算法。當然值得注意的是,分析的前提就是需要對dex檔案的格式要有一定的認識,否則的話可能會一臉懵逼態。
所以,本文會先對dex檔案格式做一個簡單的分析,也會做一些簡單的實驗,最後進入到dex diff,patch演算法部分。
一、Dex檔案格式淺析
首先簡單瞭解下Dex檔案,大家在反編譯的時候,都清楚apk中會包含一個或者多個*.dex檔案,該檔案中儲存了我們編寫的程式碼,一般情況下我們還會通過工具轉化為jar,然後通過一些工具反編譯檢視。
jar檔案大家應該都清楚,類似於class檔案的壓縮包,一般情況下,我們直接解壓就可以看到一個個class檔案。而dex檔案我們無法通過解壓獲取內部的一個個class檔案,說明dex檔案擁有自己特定的格式:
dex對Java類檔案重新排列,將所有JAVA類檔案中的常量池分解,消除其中的冗餘資訊,重新組合形成一個常量池,所有的類檔案共享同一個常量池,使得相同的字串、常量在DEX檔案中只出現一次,從而減小了檔案的體積。引自:http://blog.csdn.net/jason0539/article/details/50440669
接下來我們看看dex檔案的內部結構到底是什麼樣子。
分析一個檔案的組成,最好自己編寫一個最簡單的dex檔案來分析。
(1)編寫程式碼生成dex
首先我們編寫一個類Hello.java
:
public class Hello{ public static void main(String[] args){ System.out.println("hello dex!"); } }
然後進行編譯:
javac -source 1.7 -target 1.7 Hello.java
最後通過dx工作將其轉化為dex檔案:
dx --dex --output=Hello.dex Hello.class
dx路徑在
Android-sdk/build-tools/版本號/dx
下,如果無法識別dx命令,記得將該路徑放到path下,或者使用絕對路徑。
這樣我們就得到了一個非常簡單的dex檔案。
(2)檢視dex檔案的內部結構
首先展示一張dex檔案的大致的內部結構圖:
當然,單純從一張圖來說明肯定是遠遠不夠的,因為我們後續要研究diff,patch演算法,理論上我們應該要知道更多的細節,甚至要細緻到:一個dex檔案的每個位元組表示的是什麼內容。
對於一個類似於二進位制的檔案,最好的辦法肯定不是靠記憶,好在有這麼一個軟體可以幫助我們的分析:
- 軟體名稱:010 Editor
- 下載地址:http://www.sweetscape.com/010editor/
下載完成安裝後,開啟我們的dex檔案,會引導你安裝dex檔案的解析模板。
最終開啟效果圖如下:
上面部分代表了dex檔案的內容(16進位制的方式展示),下面部分展示了dex檔案的各個區域,你可以通過點選下面部分,來檢視其對應的內容區域以及內容。
當然這裡也非常建議,閱讀一些專門的文章來加深對dex檔案的理解:
本文也僅會對dex檔案做簡單的格式分析。
(3)dex檔案內部結構簡單分析
dex_header
首先我們隊dex_header做一個大致的分析,header中包含如下欄位:
首先我們猜測下header的作用,可以看到起包含了一些校驗相關的欄位,和整個dex檔案大致區塊的分佈(off都為偏移量)。
這樣的好處就是,當虛擬機器讀取dex檔案時,只需要讀取出header部分,就可以知道dex檔案的大致區塊分佈了;並且可以檢驗出該檔案格式是否正確、檔案是否被篡改等。
- Magic能夠證明該檔案是dex檔案
- checksum和signature主要用於校驗檔案的完整性
- file_size為dex檔案的大小
- head_size為標頭檔案的大小
- endian_tag預設值為12345678,標識預設採用Little-Endian(自行搜尋)。
剩下的幾乎都是成對出現的size和off,大多代表各區塊的包含的特定資料結構的數量和偏移量。例如:string_ids_off
為112,指的是偏移量112開始為string_ids
區域;string_ids_size
為14,代表string_id_item
的數量為14個。剩下的都類似就不介紹了。
結合010Editor可以看到各個區域包含的資料結構,以及對應的值,慢慢看就好了。
dex_map_list
除了header還有個比較重要的部分是dex_map_list
,首先看個圖:
首先是map_item_list
數量,接下來是每個map_item_list
的描述。
map_item_list
有什麼用呢?
可以看到每個map_list_item
包含一個列舉型別,一個2位元組暫未使用的成員、一個size表明當前型別的個數,offset表明當前型別偏移量。
拿本例來說:
- 首先是
TYPE_HEADER_ITEM
型別,包含1個header(size=1),且偏移量為0。 - 接下來是
TYPE_STRING_ID_ITEM
,包含14個string_id_item
(size=14),且偏移量為112(如果有印象,header的長度為112,緊跟著header)。
剩下的依次類推~~
這樣的話,可以看出通過map_list
,可以將一個完整的dex檔案劃分成固定的區域(本例為13),且知道每個區域的開始,以及該區域對應的資料格式的個數。
通過map_list
找到各個區域的開始,每個區域都會對應特定的資料結構,通過010 Editor看就好了。
二、分析前的思考
現在我們瞭解了dex的基本格式,接下來我們考慮下如何做dex diff 和 patch。
先要考慮的是我們有什麼:
- old dex
- new dex
我們想要生成一個patch檔案,該檔案和old dex 通過patch演算法還能生成new dex。
- 那麼我們該如何做呢?
根據上文的分析,我們知道dex檔案大致有3個部分(這裡3個部分主要用於分析,勿較真):
- header
- 各個區域
- map list
header實際上是可以根據後面的資料確定其內容的,並且是定長112的;各個區域後面說;map list實際上可以做到定位到各個區域開始位置;
我們最終patch + old dex -> new dex;針對上述的3個部分,
- header我們可以不做處理,因為可以根據其他資料生成;
- map list這個東西,其實我們主要要的是各個區域的開始(offset)
- 知道了各個區域的offset後,在我們生成new dex的時候,我們就可以定位各個區域的開始和結束位置,那麼只需要往各個區域寫資料即可。
那麼我們看看針對一個區域的diff,假設有個string區域,主要用於儲存字串:
old dex該區域的字串有: Hello、World、zhy
new dex該區域的字串有: Android、World、zhy
可以看出,針對該區域,我們刪除了Hello,增加了Android。
那麼patch中針對該區域可以如下記錄:
“del Hello , add Android”(實際情況需要轉化為二進位制)。
想想應用中可以直接讀取出old dex,即知道:
- 原來該區域包含:Hello、World、zhy
- patch中該區域包含:”del Hello , add Android”
那麼,可以非常容易的計算出new dex中包含:
Android、World、zhy。
這樣我們就完成了一個區域大致的diff和patch演算法,其他各個區域的diff和patch和上述類似。
這樣來看,是不是覺得這個diff和patch演算法也沒有那麼的複雜,實際上tinker的做法與上述類似,實際情況可能要比上述描述要複雜一些,但是大體上是差不多的。
有了一個大致的演算法概念之後,我們就可以去看原始碼了。
三、Tinker DexDiff原始碼淺析
tinker的地址:https://github.com/Tencent/tinker
這裡看程式碼實際上也是有技巧的,tinker的程式碼實際上蠻多的,往往你可以會陷在一堆的程式碼中。我們可以這麼考慮,比如diff演算法,輸入引數為old dex 、new dex,輸出為patch file。
那麼肯定存在某個類,或者某個方法接受和輸出上述引數。實際上該類為DexPatchGenerator
:
diff的API使用程式碼為:
@Test public void testDiff() throws IOException { File oldFile = new File("Hello.dex"); File newFile = new File("Hello-World.dex"); File patchFile = new File("patch.dex"); DexPatchGenerator dexPatchGenerator = new DexPatchGenerator(oldFile, newFile); dexPatchGenerator.executeAndSaveTo(patchFile); }
程式碼在tinker-build的tinker-patch-lib下。
寫一個單元測試或者main方法,上述幾行程式碼就是diff演算法。
所以檢視程式碼時要有針對性,比如看diff演算法,就找到diff演算法的入口,不要在gradle plugin中去糾結。
(1)dex file => Dex
public DexPatchGenerator(File oldDexFile, File newDexFile) throws IOException { this(new Dex(oldDexFile), new Dex(newDexFile)); }
將我們傳入的dex檔案轉化為了Dex物件。
public Dex(File file) throws IOException { // 刪除了一堆程式碼 InputStream in = new BufferedInputStream(new FileInputStream(file)); loadFrom(in, (int) file.length()); } private void loadFrom(InputStream in, int initSize) throws IOException { byte[] rawData = FileUtils.readStream(in, initSize); this.data = ByteBuffer.wrap(rawData); this.data.order(ByteOrder.LITTLE_ENDIAN); this.tableOfContents.readFrom(this); }
首先將我們的檔案讀取為byte[]陣列(這裡還是蠻耗費記憶體的),然後由ByteBuffer進行包裝,並設定位元組順序為小端(這裡說明ByteBuffer還是蠻方便的。然後通過readFrom方法為Dex物件的tableOfContents賦值。
#TableOfContents public void readFrom(Dex dex) throws IOException { readHeader(dex.openSection(header)); // special case, since mapList.byteCount is available only after // computeSizesFromOffsets() was invoked, so here we can't use // dex.openSection(mapList) to get dex section. Or // an {@code java.nio.BufferUnderflowException} will be thrown. readMap(dex.openSection(mapList.off)); computeSizesFromOffsets(); }
在其內部執行了readHeader和readMap,上文我們大致分析了header和map list相關,實際上就是將這兩個區域轉化為一定的資料結構,讀取然後儲存到記憶體中。
首先看readHeader:
private void readHeader(Dex.Section headerIn) throws UnsupportedEncodingException { byte[] magic = headerIn.readByteArray(8); int apiTarget = DexFormat.magicToApi(magic); if (apiTarget != DexFormat.API_NO_EXTENDED_OPCODES) { throw new DexException("Unexpected magic: " + Arrays.toString(magic)); } checksum = headerIn.readInt(); signature = headerIn.readByteArray(20); fileSize = headerIn.readInt(); int headerSize = headerIn.readInt(); if (headerSize != SizeOf.HEADER_ITEM) { throw new DexException("Unexpected header: 0x" + Integer.toHexString(headerSize)); } int endianTag = headerIn.readInt(); if (endianTag != DexFormat.ENDIAN_TAG) { throw new DexException("Unexpected endian tag: 0x" + Integer.toHexString(endianTag)); } linkSize = headerIn.readInt(); linkOff = headerIn.readInt(); mapList.off = headerIn.readInt(); if (mapList.off == 0) { throw new DexException("Cannot merge dex files that do not contain a map"); } stringIds.size = headerIn.readInt(); stringIds.off = headerIn.readInt(); typeIds.size = headerIn.readInt(); typeIds.off = headerIn.readInt(); protoIds.size = headerIn.readInt(); protoIds.off = headerIn.readInt(); fieldIds.size = headerIn.readInt(); fieldIds.off = headerIn.readInt(); methodIds.size = headerIn.readInt(); methodIds.off = headerIn.readInt(); classDefs.size = headerIn.readInt(); classDefs.off = headerIn.readInt(); dataSize = headerIn.readInt(); dataOff = headerIn.readInt(); }
如果你現在開啟著010 Editor,或者看一眼最前面的圖,實際上就是將header中所有的欄位定義出來,讀取響應的位元組並賦值。
接下來看readMap:
private void readMap(Dex.Section in) throws IOException { int mapSize = in.readInt(); Section previous = null; for (int i = 0; i < mapSize; i++) { short type = in.readShort(); in.readShort(); // unused Section section = getSection(type); int size = in.readInt(); int offset = in.readInt(); section.size = size; section.off = offset; previous = section; } header.off = 0; Arrays.sort(sections); // Skip header section, since its offset must be zero. for (int i = 1; i < sections.length; ++i) { if (sections[i].off == Section.UNDEF_OFFSET) { sections[i].off = sections[i - 1].off; } } }
這裡注意,在讀取header的時候,實際上已經讀取除了map list區域的offset,並儲存在mapList.off中。所以map list中實際上是從這個位置開始的。首先讀取的就是map_list_item
的個數,接下來讀取的就是每個map_list_item
對應的實際資料。
可以看到依次讀取:type,unused,size,offset,如果你還有印象前面我們描述了map_list_item
是與此對應的,對應的資料結構為TableContents.Section
物件。
computeSizesFromOffsets()主要為section的byteCount(佔據了多個位元組)引數賦值。
到這裡就完成了dex file 到 Dex物件的初始化。
有了兩個Dex物件之後,就需要去做diff操作了。
(2)dex diff
繼續回到原始碼:
public DexPatchGenerator(File oldDexFile, InputStream newDexStream) throws IOException { this(new Dex(oldDexFile), new Dex(newDexStream)); }
直接到兩個Dex物件的建構函式:
public DexPatchGenerator(Dex oldDex, Dex newDex) { this.oldDex = oldDex; this.newDex = newDex; SparseIndexMap oldToNewIndexMap = new SparseIndexMap(); SparseIndexMap oldToPatchedIndexMap = new SparseIndexMap(); SparseIndexMap newToPatchedIndexMap = new SparseIndexMap(); SparseIndexMap selfIndexMapForSkip = new SparseIndexMap(); additionalRemovingClassPatternSet = new HashSet<>(); this.stringDataSectionDiffAlg = new StringDataSectionDiffAlgorithm( oldDex, newDex, oldToNewIndexMap, oldToPatchedIndexMap, newToPatchedIndexMap, selfIndexMapForSkip ); this.typeIdSectionDiffAlg = ... this.protoIdSectionDiffAlg = ... this.fieldIdSectionDiffAlg = ... this.methodIdSectionDiffAlg = ... this.classDefSectionDiffAlg = ... this.typeListSectionDiffAlg = ... this.annotationSetRefListSectionDiffAlg = ... this.annotationSetSectionDiffAlg = ... this.classDataSectionDiffAlg = ... this.codeSectionDiffAlg = ... this.debugInfoSectionDiffAlg = ... this.annotationSectionDiffAlg = ... this.encodedArraySectionDiffAlg = ... this.annotationsDirectorySectionDiffAlg = ... }
看到其首先為oldDex,newDex賦值,然後依次初始化了15個演算法,每個演算法代表每個區域,演算法的目的就像我們之前描述的那樣,要知道“刪除了哪些,新增了哪些”;
我們繼續看程式碼:
dexPatchGenerator.executeAndSaveTo(patchFile);
有了dexPatchGenerator物件後,直接指向了executeAndSaveTo方法。
public void executeAndSaveTo(File file) throws IOException { OutputStream os = null; try { os = new BufferedOutputStream(new FileOutputStream(file)); executeAndSaveTo(os); } finally { if (os != null) { try { os.close(); } catch (Exception e) { // ignored. } } } }
到executeAndSaveTo方法:
public void executeAndSaveTo(OutputStream out) throws IOException { int patchedheaderSize = SizeOf.HEADER_ITEM; int patchedStringIdsSize = newDex.getTableOfContents().stringIds.size * SizeOf.STRING_ID_ITEM; int patchedTypeIdsSize = newDex.getTableOfContents().typeIds.size * SizeOf.TYPE_ID_ITEM; int patchedProtoIdsSize = newDex.getTableOfContents().protoIds.size * SizeOf.PROTO_ID_ITEM; int patchedFieldIdsSize = newDex.getTableOfContents().fieldIds.size * SizeOf.MEMBER_ID_ITEM; int patchedMethodIdsSize = newDex.getTableOfContents().methodIds.size * SizeOf.MEMBER_ID_ITEM; int patchedClassDefsSize = newDex.getTableOfContents().classDefs.size * SizeOf.CLASS_DEF_ITEM; int patchedIdSectionSize = patchedStringIdsSize + patchedTypeIdsSize + patchedProtoIdsSize + patchedFieldIdsSize + patchedMethodIdsSize + patchedClassDefsSize; this.patchedHeaderOffset = 0; this.patchedStringIdsOffset = patchedHeaderOffset + patchedheaderSize; this.stringDataSectionDiffAlg.execute(); this.patchedStringDataItemsOffset = patchedheaderSize + patchedIdSectionSize; this.stringDataSectionDiffAlg.simulatePatchOperation(this.patchedStringDataItemsOffset); // 省略了其餘14個演算法的一堆程式碼 this.patchedDexSize = this.patchedMapListOffset + patchedMapListSize; writeResultToStream(out); }
因為涉及到15個演算法,所以這裡的程式碼非常長,我們這裡只拿其中一個演算法來說明。
每個演算法都會執行execute
和simulatePatchOperation
方法:
首先看execute:
public void execute() { this.patchOperationList.clear(); // 1. 拿到oldDex和newDex的itemList this.adjustedOldIndexedItemsWithOrigOrder = collectSectionItems(this.oldDex, true); this.oldItemCount = this.adjustedOldIndexedItemsWithOrigOrder.length; AbstractMap.SimpleEntry<Integer, T>[] adjustedOldIndexedItems = new AbstractMap.SimpleEntry[this.oldItemCount]; System.arraycopy(this.adjustedOldIndexedItemsWithOrigOrder, 0, adjustedOldIndexedItems, 0, this.oldItemCount); Arrays.sort(adjustedOldIndexedItems, this.comparatorForItemDiff); AbstractMap.SimpleEntry<Integer, T>[] adjustedNewIndexedItems = collectSectionItems(this.newDex, false); this.newItemCount = adjustedNewIndexedItems.length; Arrays.sort(adjustedNewIndexedItems, this.comparatorForItemDiff); int oldCursor = 0; int newCursor = 0; // 2.遍歷,對比,收集patch操作 while (oldCursor < this.oldItemCount || newCursor < this.newItemCount) { if (oldCursor >= this.oldItemCount) { // rest item are all newItem. while (newCursor < this.newItemCount) { // 對剩下的newItem做ADD操作 } } else if (newCursor >= newItemCount) { // rest item are all oldItem. while (oldCursor < oldItemCount) { // 對剩下的oldItem做DEL操作 } } else { AbstractMap.SimpleEntry<Integer, T> oldIndexedItem = adjustedOldIndexedItems[oldCursor]; AbstractMap.SimpleEntry<Integer, T> newIndexedItem = adjustedNewIndexedItems[newCursor]; int cmpRes = oldIndexedItem.getValue().compareTo(newIndexedItem.getValue()); if (cmpRes < 0) { int deletedIndex = oldIndexedItem.getKey(); int deletedOffset = getItemOffsetOrIndex(deletedIndex, oldIndexedItem.getValue()); this.patchOperationList.add(new PatchOperation<T>(PatchOperation.OP_DEL, deletedIndex)); markDeletedIndexOrOffset(this.oldToPatchedIndexMap, deletedIndex, deletedOffset); ++oldCursor; } else if (cmpRes > 0) { this.patchOperationList.add(new PatchOperation<>(PatchOperation.OP_ADD, newIndexedItem.getKey(), newIndexedItem.getValue())); ++newCursor; } else { int oldIndex = oldIndexedItem.getKey(); int newIndex = newIndexedItem.getKey(); int oldOffset = getItemOffsetOrIndex(oldIndexedItem.getKey(), oldIndexedItem.getValue()); int newOffset = getItemOffsetOrIndex(newIndexedItem.getKey(), newIndexedItem.getValue()); if (oldIndex != newIndex) { this.oldIndexToNewIndexMap.put(oldIndex, newIndex); } if (oldOffset != newOffset) { this.oldOffsetToNewOffsetMap.put(oldOffset, newOffset); } ++oldCursor; ++newCursor; } } } // 未完 }
可以看到首先讀取oldDex和newDex對應區域的資料並排序,分別adjustedOldIndexedItems和adjustedNewIndexedItems。
接下來就開始遍歷了,直接看else部分:
分別根據當前的cursor,獲取oldItem和newItem,對其value對對比:
- 如果<0 ,則認為該old Item被刪除了,記錄為
PatchOperation.OP_DEL
,並記錄該oldItem index到PatchOperation
物件,加入到patchOperationList中。 - 如果>0,則認為該newItem是新增的,記錄為
PatchOperation.OP_ADD
,並記錄該newItem index和value到PatchOperation
物件,加入到patchOperationList中。 - 如果=0,不會生成PatchOperation。
經過上述,我們得到了一個patchOperationList物件。
繼續下半部分程式碼:
public void execute() { // 接上... // 根據index排序,如果index一樣,則先DEL後ADD Collections.sort(this.patchOperationList, comparatorForPatchOperationOpt); Iterator<PatchOperation<T>> patchOperationIt = this.patchOperationList.iterator(); PatchOperation<T> prevPatchOperation = null; while (patchOperationIt.hasNext()) { PatchOperation<T> patchOperation = patchOperationIt.next(); if (prevPatchOperation != null && prevPatchOperation.op == PatchOperation.OP_DEL && patchOperation.op == PatchOperation.OP_ADD ) { if (prevPatchOperation.index == patchOperation.index) { prevPatchOperation.op = PatchOperation.OP_REPLACE; prevPatchOperation.newItem = patchOperation.newItem; patchOperationIt.remove(); prevPatchOperation = null; } else { prevPatchOperation = patchOperation; } } else { prevPatchOperation = patchOperation; } } // Finally we record some information for the final calculations. patchOperationIt = this.patchOperationList.iterator(); while (patchOperationIt.hasNext()) { PatchOperation<T> patchOperation = patchOperationIt.next(); switch (patchOperation.op) { case PatchOperation.OP_DEL: { indexToDelOperationMap.put(patchOperation.index, patchOperation); break; } case PatchOperation.OP_ADD: { indexToAddOperationMap.put(patchOperation.index, patchOperation); break; } case PatchOperation.OP_REPLACE: { indexToReplaceOperationMap.put(patchOperation.index, patchOperation); break; } } } }
- 首先對patchOperationList按照index排序,如果index一致則先DEL、後ADD。
- 接下來一個對所有的operation的迭代,主要將index一致的,且連續的DEL、ADD轉化為REPLACE操作。
- 最後將patchOperationList轉化為3個Map,分別為:
indexToDelOperationMap
,indexToAddOperationMap
,indexToReplaceOperationMap
。
ok,經歷完成execute之後,我們主要的產物就是3個Map,分別記錄了:oldDex中哪些index需要刪除;newDex中新增了哪些item;哪些item需要替換為新item。
剛才說了每個演算法除了execute()
還有個simulatePatchOperation()
this.stringDataSectionDiffAlg .simulatePatchOperation(this.patchedStringDataItemsOffset);
傳入的偏移量為data區域的偏移量。
public void simulatePatchOperation(int baseOffset) { int oldIndex = 0; int patchedIndex = 0; int patchedOffset = baseOffset; while (oldIndex < this.oldItemCount || patchedIndex < this.newItemCount) { if (this.indexToAddOperationMap.containsKey(patchedIndex)) { //省略了一些程式碼 T newItem = patchOperation.newItem; int itemSize = getItemSize(newItem); ++patchedIndex; patchedOffset += itemSize; } else if (this.indexToReplaceOperationMap.containsKey(patchedIndex)) { //省略了一些程式碼 T newItem = patchOperation.newItem; int itemSize = getItemSize(newItem); ++patchedIndex; patchedOffset += itemSize; } else if (this.indexToDelOperationMap.containsKey(oldIndex)) { ++oldIndex; } else if (this.indexToReplaceOperationMap.containsKey(oldIndex)) { ++oldIndex; } else if (oldIndex < this.oldItemCount) { ++oldIndex; ++patchedIndex; patchedOffset += itemSize; } } this.patchedSectionSize = SizeOf.roundToTimesOfFour(patchedOffset - baseOffset); }
遍歷oldIndex與newIndex,分別在indexToAddOperationMap
,indexToReplaceOperationMap
,indexToDelOperationMap
中查詢。
這裡關注一點最終的一個產物是this.patchedSectionSize
,由patchedOffset-baseOffset
所得。
這裡有幾種情況會造成patchedOffset+=itemSize
:
- indexToAddOperationMap中包含patchIndex
- indexToReplaceOperationMap包含patchIndex
- 不在indexToDelOperationMap與indexToReplaceOperationMap中的oldDex.
其實很好理解,這個patchedSectionSize其實對應newDex的這個區域的size。所以,包含需要ADD的Item,會被替代的Item,以及OLD ITEMS中沒有被刪除和替代的Item。這三者相加即為newDex的itemList。
到這裡,一個演算法就執行完畢了。
經過這樣的一個演算法,我們得到了PatchOperationList和對應區域sectionSize。那麼執行完成所有的演算法,應該會得到針對每個演算法的PatchOperationList,和每個區域的sectionSize;每個區域的sectionSize實際上換算得到每個區域的offset。
每個區域的演算法,execute和simulatePatchOperation程式碼都是複用的,所以其他的都只有細微的變化,可以自己看了。
接下來看執行完成所有的演算法後的writeResultToStream
方法。
(3) 生成patch檔案
private void writeResultToStream(OutputStream os) throws IOException { DexDataBuffer buffer = new DexDataBuffer(); buffer.write(DexPatchFile.MAGIC); // DEXDIFF buffer.writeShort(DexPatchFile.CURRENT_VERSION); /0x0002 buffer.writeInt(this.patchedDexSize); // we will return here to write firstChunkOffset later. int posOfFirstChunkOffsetField = buffer.position(); buffer.writeInt(0); buffer.writeInt(this.patchedStringIdsOffset); buffer.writeInt(this.patchedTypeIdsOffset); buffer.writeInt(this.patchedProtoIdsOffset); buffer.writeInt(this.patchedFieldIdsOffset); buffer.writeInt(this.patchedMethodIdsOffset); buffer.writeInt(this.patchedClassDefsOffset); buffer.writeInt(this.patchedMapListOffset); buffer.writeInt(this.patchedTypeListsOffset); buffer.writeInt(this.patchedAnnotationSetRefListItemsOffset); buffer.writeInt(this.patchedAnnotationSetItemsOffset); buffer.writeInt(this.patchedClassDataItemsOffset); buffer.writeInt(this.patchedCodeItemsOffset); buffer.writeInt(this.patchedStringDataItemsOffset); buffer.writeInt(this.patchedDebugInfoItemsOffset); buffer.writeInt(this.patchedAnnotationItemsOffset); buffer.writeInt(this.patchedEncodedArrayItemsOffset); buffer.writeInt(this.patchedAnnotationsDirectoryItemsOffset); buffer.write(this.oldDex.computeSignature(false)); int firstChunkOffset = buffer.position(); buffer.position(posOfFirstChunkOffsetField); buffer.writeInt(firstChunkOffset); buffer.position(firstChunkOffset); writePatchOperations(buffer, this.stringDataSectionDiffAlg.getPatchOperationList()); // 省略其他14個writePatch... byte[] bufferData = buffer.array(); os.write(bufferData); os.flush(); }
- 首先寫了MAGIC,CURRENT_VERSION主要用於檢查該檔案為合法的tinker patch 檔案。
- 然後寫入patchedDexSize
- 第四位寫入的是資料區的offset,可以看到先使用0站位,等所有的map list相關的offset書寫結束,寫入當前的位置。
- 接下來寫入所有的跟maplist各個區域相關的offset(這裡各個區域的排序不重要,讀寫一致即可)
- 然後執行每個演算法寫入對應區域的資訊
- 最後生成patch檔案
我們依舊只看stringDataSectionDiffAlg這個演算法。
private <T extends Comparable<T>> void writePatchOperations( DexDataBuffer buffer, List<PatchOperation<T>> patchOperationList ) { List<Integer> delOpIndexList = new ArrayList<>(patchOperationList.size()); List<Integer> addOpIndexList = new ArrayList<>(patchOperationList.size()); List<Integer> replaceOpIndexList = new ArrayList<>(patchOperationList.size()); List<T> newItemList = new ArrayList<>(patchOperationList.size()); for (PatchOperation<T> patchOperation : patchOperationList) { switch (patchOperation.op) { case PatchOperation.OP_DEL: { delOpIndexList.add(patchOperation.index); break; } case PatchOperation.OP_ADD: { addOpIndexList.add(patchOperation.index); newItemList.add(patchOperation.newItem); break; } case PatchOperation.OP_REPLACE: { replaceOpIndexList.add(patchOperation.index); newItemList.add(patchOperation.newItem); break; } } } buffer.writeUleb128(delOpIndexList.size()); int lastIndex = 0; for (Integer index : delOpIndexList) { buffer.writeSleb128(index - lastIndex); lastIndex = index; } buffer.writeUleb128(addOpIndexList.size()); lastIndex = 0; for (Integer index : addOpIndexList) { buffer.writeSleb128(index - lastIndex); lastIndex = index; } buffer.writeUleb128(replaceOpIndexList.size()); lastIndex = 0; for (Integer index : replaceOpIndexList) { buffer.writeSleb128(index - lastIndex); lastIndex = index; } for (T newItem : newItemList) { if (newItem instanceof StringData) { buffer.writeStringData((StringData) newItem); } // else 其他型別,write其他型別Data } }
首先將我們的patchOperationList轉化為3個OpIndexList,分別對應DEL,ADD,REPLACE,以及將所有的item存入newItemList。
然後依次寫入:
- del操作的個數,每個del的index
- add操作的個數,每個add的index
- replace操作的個數,每個需要replace的index
- 最後依次寫入newItemList.
這裡index都做了(這裡做了個index – lastIndex操作)
其他的演算法也是執行了類似的操作。
最好來看看我們生成的patch是什麼樣子的:
- 首先包含幾個欄位,證明自己是tinker patch
- 包含生成newDex各個區域的offset,即可以將newDex劃分了多個區域,定位到起點
- 包含newDex各個區域的Item的刪除的索引(oldDex),新增的索引和值,替換的索引和值
那麼這麼看,我們猜測Patch的邏輯時這樣的:
- 首先根據各個區域的offset,確定各個區域的起點
- 讀取oldDex各個區域的items,然後根據patch中去除掉oldDex中需要刪除的和需要替換的item,再加上新增的item和替換的item即可組成newOld該區域的items。
即,newDex的某個區域的包含:
oldItems - del - replace + addItems + replaceItems
這麼看挺清晰的,下面看程式碼咯~
四、Tinker DexPatch原始碼淺析
(1)尋找入口
與diff一樣,肯定有那麼一個類或者方法,接受old dex File 和 patch File,最後生成new Dex。不要陷在一堆安全校驗,apk解壓的程式碼中。
這個類叫做DexPatchApplier
,在tinker-commons中。
patch的相關程式碼如下:
@Test public void testPatch() throws IOException { File oldFile = new File("Hello.dex"); File patchFile = new File("patch.dex"); File newFile = new File("new.dex"); DexPatchApplier dexPatchGenerator = new DexPatchApplier(oldFile, patchFile); dexPatchGenerator.executeAndSaveTo(newFile); }
可以看到和diff程式碼類似,下面看程式碼去。
(2)原始碼分析
public DexPatchApplier(File oldDexIn, File patchFileIn) throws IOException { this(new Dex(oldDexIn), new DexPatchFile(patchFileIn)); }
oldDex會轉化為Dex物件,這個上面分析過,主要就是readHeader和readMap.注意我們的patchFile是轉為一個DexPatchFile物件。
public DexPatchFile(File file) throws IOException { this.buffer = new DexDataBuffer(ByteBuffer.wrap(FileUtils.readFile(file))); init(); }
首先將patch file讀取為byte[],然後呼叫init
private void init() { byte[] magic = this.buffer.readByteArray(MAGIC.length); if (CompareUtils.uArrCompare(magic, MAGIC) != 0) { throw new IllegalStateException("bad dex patch file magic: " + Arrays.toString(magic)); } this.version = this.buffer.readShort(); if (CompareUtils.uCompare(this.version, CURRENT_VERSION) != 0) { throw new IllegalStateException("bad dex patch file version: " + this.version + ", expected: " + CURRENT_VERSION); } this.patchedDexSize = this.buffer.readInt(); this.firstChunkOffset = this.buffer.readInt(); this.patchedStringIdSectionOffset = this.buffer.readInt(); this.patchedTypeIdSectionOffset = this.buffer.readInt(); this.patchedProtoIdSectionOffset = this.buffer.readInt(); this.patchedFieldIdSectionOffset = this.buffer.readInt(); this.patchedMethodIdSectionOffset = this.buffer.readInt(); this.patchedClassDefSectionOffset = this.buffer.readInt(); this.patchedMapListSectionOffset = this.buffer.readInt(); this.patchedTypeListSectionOffset = this.buffer.readInt(); this.patchedAnnotationSetRefListSectionOffset = this.buffer.readInt(); this.patchedAnnotationSetSectionOffset = this.buffer.readInt(); this.patchedClassDataSectionOffset = this.buffer.readInt(); this.patchedCodeSectionOffset = this.buffer.readInt(); this.patchedStringDataSectionOffset = this.buffer.readInt(); this.patchedDebugInfoSectionOffset = this.buffer.readInt(); this.patchedAnnotationSectionOffset = this.buffer.readInt(); this.patchedEncodedArraySectionOffset = this.buffer.readInt(); this.patchedAnnotationsDirectorySectionOffset = this.buffer.readInt(); this.oldDexSignature = this.buffer.readByteArray(SizeOf.SIGNATURE); this.buffer.position(firstChunkOffset); }
還記得我們寫patch的操作麼,先寫了MAGIC和Version用於校驗該檔案是一個patch file;接下來為patchedDexSize和各種offset進行賦值;最後定位到資料區(firstChunkOffset),還記得寫的時候,該欄位在第四個位置。
定位到該位置後,後面讀取的就是資料了,資料存的時候按照如下格式儲存的:
- del操作的個數,每個del的index
- add操作的個數,每個add的index
- replace操作的個數,每個需要replace的index
- 最後依次寫入newItemList.
簡單回憶下,我們繼續原始碼分析。
public DexPatchApplier(File oldDexIn, File patchFileIn) throws IOException { this(new Dex(oldDexIn), new DexPatchFile(patchFileIn)); } public DexPatchApplier( Dex oldDexIn, DexPatchFile patchFileIn) { this.oldDex = oldDexIn; this.patchFile = patchFileIn; this.patchedDex = new Dex(patchFileIn.getPatchedDexSize()); this.oldToPatchedIndexMap = new SparseIndexMap(); }
除了oldDex,patchFile,還初始化了一個patchedDex作為我們最終輸出Dex物件。
構造完成後,直接執行了executeAndSaveTo
方法。
public void executeAndSaveTo(File file) throws IOException { OutputStream os = null; try { os = new BufferedOutputStream(new FileOutputStream(file)); executeAndSaveTo(os); } finally { if (os != null) { try { os.close(); } catch (Exception e) { // ignored. } } } }
直接到executeAndSaveTo(os)
,該方法程式碼比較長,我們分3段講解:
public void executeAndSaveTo(OutputStream out) throws IOException { TableOfContents patchedToc = this.patchedDex.getTableOfContents(); patchedToc.header.off = 0; patchedToc.header.size = 1; patchedToc.mapList.size = 1; patchedToc.stringIds.off = this.patchFile.getPatchedStringIdSectionOffset(); patchedToc.typeIds.off = this.patchFile.getPatchedTypeIdSectionOffset(); patchedToc.typeLists.off = this.patchFile.getPatchedTypeListSectionOffset(); patchedToc.protoIds.off = this.patchFile.getPatchedProtoIdSectionOffset(); patchedToc.fieldIds.off = this.patchFile.getPatchedFieldIdSectionOffset(); patchedToc.methodIds.off = this.patchFile.getPatchedMethodIdSectionOffset(); patchedToc.classDefs.off = this.patchFile.getPatchedClassDefSectionOffset(); patchedToc.mapList.off = this.patchFile.getPatchedMapListSectionOffset(); patchedToc.stringDatas.off = this.patchFile.getPatchedStringDataSectionOffset(); patchedToc.annotations.off = this.patchFile.getPatchedAnnotationSectionOffset(); patchedToc.annotationSets.off = this.patchFile.getPatchedAnnotationSetSectionOffset(); patchedToc.annotationSetRefLists.off = this.patchFile.getPatchedAnnotationSetRefListSectionOffset(); patchedToc.annotationsDirectories.off = this.patchFile.getPatchedAnnotationsDirectorySectionOffset(); patchedToc.encodedArrays.off = this.patchFile.getPatchedEncodedArraySectionOffset(); patchedToc.debugInfos.off = this.patchFile.getPatchedDebugInfoSectionOffset(); patchedToc.codes.off = this.patchFile.getPatchedCodeSectionOffset(); patchedToc.classDatas.off = this.patchFile.getPatchedClassDataSectionOffset(); patchedToc.fileSize = this.patchFile.getPatchedDexSize(); Arrays.sort(patchedToc.sections); patchedToc.computeSizesFromOffsets(); // 未完待續... }
這裡實際上,就是讀取patchFile中記錄的值給patchedDex的TableOfContent中各種Section(大致對應map list中各個map_list_item
)賦值。
接下來排序呢,設定byteCount
等欄位資訊。
繼續:
public void executeAndSaveTo(OutputStream out) throws IOException { // 省略第一部分程式碼 // Secondly, run patch algorithms according to sections' dependencies. this.stringDataSectionPatchAlg = new StringDataSectionPatchAlgorithm( patchFile, oldDex, patchedDex, oldToPatchedIndexMap ); this.typeIdSectionPatchAlg = new TypeIdSectionPatchAlgorithm( patchFile, oldDex, patchedDex, oldToPatchedIndexMap ); this.protoIdSectionPatchAlg = new ProtoIdSectionPatchAlgorithm( patchFile, oldDex, patchedDex, oldToPatchedIndexMap ); this.fieldIdSectionPatchAlg = new FieldIdSectionPatchAlgorithm( patchFile, oldDex, patchedDex, oldToPatchedIndexMap ); this.methodIdSectionPatchAlg = new MethodIdSectionPatchAlgorithm( patchFile, oldDex, patchedDex, oldToPatchedIndexMap ); this.classDefSectionPatchAlg = new ClassDefSectionPatchAlgorithm( patchFile, oldDex, patchedDex, oldToPatchedIndexMap ); this.typeListSectionPatchAlg = new TypeListSectionPatchAlgorithm( patchFile, oldDex, patchedDex, oldToPatchedIndexMap ); this.annotationSetRefListSectionPatchAlg = new AnnotationSetRefListSectionPatchAlgorithm( patchFile, oldDex, patchedDex, oldToPatchedIndexMap ); this.annotationSetSectionPatchAlg = new AnnotationSetSectionPatchAlgorithm( patchFile, oldDex, patchedDex, oldToPatchedIndexMap ); this.classDataSectionPatchAlg = new ClassDataSectionPatchAlgorithm( patchFile, oldDex, patchedDex, oldToPatchedIndexMap ); this.codeSectionPatchAlg = new CodeSectionPatchAlgorithm( patchFile, oldDex, patchedDex, oldToPatchedIndexMap ); this.debugInfoSectionPatchAlg = new DebugInfoItemSectionPatchAlgorithm( patchFile, oldDex, patchedDex, oldToPatchedIndexMap ); this.annotationSectionPatchAlg = new AnnotationSectionPatchAlgorithm( patchFile, oldDex, patchedDex, oldToPatchedIndexMap ); this.encodedArraySectionPatchAlg = new StaticValueSectionPatchAlgorithm( patchFile, oldDex, patchedDex, oldToPatchedIndexMap ); this.annotationsDirectorySectionPatchAlg = new AnnotationsDirectorySectionPatchAlgorithm( patchFile, oldDex, patchedDex, oldToPatchedIndexMap ); this.stringDataSectionPatchAlg.execute(); this.typeIdSectionPatchAlg.execute(); this.typeListSectionPatchAlg.execute(); this.protoIdSectionPatchAlg.execute(); this.fieldIdSectionPatchAlg.execute(); this.methodIdSectionPatchAlg.execute(); this.annotationSectionPatchAlg.execute(); this.annotationSetSectionPatchAlg.execute(); this.annotationSetRefListSectionPatchAlg.execute(); this.annotationsDirectorySectionPatchAlg.execute(); this.debugInfoSectionPatchAlg.execute(); this.codeSectionPatchAlg.execute(); this.classDataSectionPatchAlg.execute(); this.encodedArraySectionPatchAlg.execute(); this.classDefSectionPatchAlg.execute(); //未完待續... }
這一部分很明顯初始化了一堆演算法,然後分別去執行。我們依然是拿stringDataSectionPatchAlg
來分析。
public void execute() { final int deletedItemCount = patchFile.getBuffer().readUleb128(); final int[] deletedIndices = readDeltaIndiciesOrOffsets(deletedItemCount); final int addedItemCount = patchFile.getBuffer().readUleb128(); final int[] addedIndices = readDeltaIndiciesOrOffsets(addedItemCount); final int replacedItemCount = patchFile.getBuffer().readUleb128(); final int[] replacedIndices = readDeltaIndiciesOrOffsets(replacedItemCount); final TableOfContents.Section tocSec = getTocSection(this.oldDex); Dex.Section oldSection = null; int oldItemCount = 0; if (tocSec.exists()) { oldSection = this.oldDex.openSection(tocSec); oldItemCount = tocSec.size; } // Now rest data are added and replaced items arranged in the order of // added indices and replaced indices. doFullPatch( oldSection, oldItemCount, deletedIndices, addedIndices, replacedIndices ); }
再貼一下我們寫入時的規則:
- del操作的個數,每個del的index
- add操作的個數,每個add的index
- replace操作的個數,每個需要replace的index
- 最後依次寫入newItemList.
看程式碼,讀取順序如下:
- del的數量,del的所有的index儲存在一個int[]中;
- add的數量,add的所有的index儲存在一個int[]中;
- replace的數量,replace的所有的index儲存在一個int[]中;
是不是和寫入時一致。
繼續,接下來獲取了oldDex中oldItems和oldItemCount。
那麼現在有了:
- del count and indices
- add count add indices
- replace count and indices
- oldItems and oldItemCount
拿著我們擁有的,繼續執行doFullPatch
private void doFullPatch( Dex.Section oldSection, int oldItemCount, int[] deletedIndices, int[] addedIndices, int[] replacedIndices) { int deletedItemCount = deletedIndices.length; int addedItemCount = addedIndices.length; int replacedItemCount = replacedIndices.length; int newItemCount = oldItemCount + addedItemCount - deletedItemCount; int deletedItemCounter = 0; int addActionCursor = 0; int replaceActionCursor = 0; int oldIndex = 0; int patchedIndex = 0; while (oldIndex < oldItemCount || patchedIndex < newItemCount) { if (addActionCursor < addedItemCount && addedIndices[addActionCursor] == patchedIndex) { T addedItem = nextItem(patchFile.getBuffer()); int patchedOffset = writePatchedItem(addedItem); ++addActionCursor; ++patchedIndex; } else if (replaceActionCursor < replacedItemCount && replacedIndices[replaceActionCursor] == patchedIndex) { T replacedItem = nextItem(patchFile.getBuffer()); int patchedOffset = writePatchedItem(replacedItem); ++replaceActionCursor; ++patchedIndex; } else if (Arrays.binarySearch(deletedIndices, oldIndex) >= 0) { T skippedOldItem = nextItem(oldSection); // skip old item. ++oldIndex; ++deletedItemCounter; } else if (Arrays.binarySearch(replacedIndices, oldIndex) >= 0) { T skippedOldItem = nextItem(oldSection); // skip old item. ++oldIndex; } else if (oldIndex < oldItemCount) { T oldItem = adjustItem(this.oldToPatchedIndexMap, nextItem(oldSection)); int patchedOffset = writePatchedItem(oldItem); ++oldIndex; ++patchedIndex; } } }
先整體上看一下,這裡的目的就是往patchedDex的stringData區寫資料,寫的資料理論上應該是:
- 新增的資料
- 替代的資料
- oldDex中出去新增和被替代的資料
當然他們需要順序寫入。
所以看程式碼,首先計算出newItemCount=oldItemCount + addCount - delCount
,然後開始遍歷,遍歷條件為0~oldItemCount
或0~newItemCount
。
我們期望的是,在patchIndex從0~newItemCount
之間都會寫入對應的Item。
Item寫入通過程式碼我們可以看到:
- 首先判斷該patchIndex是否包含在addIndices中,如果包含則寫入;
- 再者判斷是否在repalceIndices中,如果包含則寫入;
- 然後判斷如果發現oldIndex被delete或者replace,直接跳過;
- 那麼最後一個index指的就是,oldIndex為非delete和replace的,也就是和newDex中items相同的部分。
上述1.2.4三個部分即可組成完整的newDex的該區域。
這樣的話就完成了stringData區域的patch演算法。
其他剩下的14個演算法的execute程式碼是相同的(父類),執行的操作類似,都會完成各個部分的patch演算法。
當所有的區域都完成恢復後,那麼剩下的就是header和mapList了,所以回到所有演算法執行完成的地方:
public void executeAndSaveTo(OutputStream out) throws IOException { //1.省略了offset的各種賦值 //2.省略了各個部分的patch演算法 // Thirdly, write header, mapList. Calculate and write patched dex's sign and checksum. Dex.Section headerOut = this.patchedDex.openSection(patchedToc.header.off); patchedToc.writeHeader(headerOut); Dex.Section mapListOut = this.patchedDex.openSection(patchedToc.mapList.off); patchedToc.writeMap(mapListOut); this.patchedDex.writeHashes(); // Finally, write patched dex to file. this.patchedDex.writeTo(out); }
定位到header區域,寫header相關資料;定位到map list區域,編寫map list相關資料。兩者都完成的時候,需要編寫header中比較特殊的兩個欄位:簽名
和checkSum
,因為這兩個欄位是依賴map list的,所以必須在編寫map list後。
這樣就完成了完整的dex的恢復,最後將記憶體中的所有資料寫到檔案中。
五、案例簡單分析
(1)dex準備
剛才我們有個Hello.dex,我們再編寫一個類:
public class World{ public static void main(String[] args){ System.out.println("nani World"); } }
然後將這個類編譯以及打成dx檔案。
javac -source 1.7 -target 1.7 World.java dx --dex --output=World.dex World.class
這樣我們就準備好了兩個dex,Hello.dex和World.dex.
(2) diff
使用010 Editor分別開啟兩個dex,我們主要關注string_id_item
;
兩邊分別13個字串,按照我們上面介紹的diff演算法,我們可以得到以下操作:
兩邊的字串分別開始遍歷對比:
- 如果<0 ,則認為該old Item被刪除了,記錄為
PatchOperation.OP_DEL
,並記錄該oldItem index到PatchOperation
物件,加入到patchOperationList中。- 如果>0,則認為該newItem是新增的,記錄為
PatchOperation.OP_ADD
,並記錄該newItem index和value到PatchOperation
物件,加入到patchOperationList中。- 如果=0,不會生成PatchOperation。
del 1 add 1 LWorld; del 2 add 8 World.java del 10 add 11 naniWorld
然後是根據索引排序,沒有變化;
接下來遍歷所有的操作,將index一致且DEL和ADD相鄰的操作替換為replace
replace 1 LWorld del 2 add 8 World.java del 10 add 11 naniWorld
最終在write時,會做一次遍歷,將操作按DEL,ADD,REPLACE進行分類,並且將出現的item放置到newItemList中。
del ops: del 2 del 10 add ops: add 8 add 11 replace ops: replace 1
newItemList變為:
LWorld //replace 1 World.java //add 8 naniWorld //add 11
然後寫入,那麼寫入的順序應該是:
2 //del size 2 8 // index - lastIndex 2 // add size 8 3 // index - lastIndex 1 //replace size 1 LWorld World.java naniWorld
這裡我們直接在DexPatchGenerator的writeResultToStream的相關位置打上日誌:
buffer.writeUleb128(delOpIndexList.size()); System.out.println("del size = " + delOpIndexList.size()); int lastIndex = 0; for (Integer index : delOpIndexList) { buffer.writeSleb128(index - lastIndex); System.out.println("del index = " + (index - lastIndex)); lastIndex = index; } buffer.writeUleb128(addOpIndexList.size()); System.out.println("add size = " + addOpIndexList.size()); lastIndex = 0; for (Integer index : addOpIndexList) { buffer.writeSleb128(index - lastIndex); System.out.println("add index = " + (index - lastIndex)); lastIndex = index; } buffer.writeUleb128(replaceOpIndexList.size()); System.out.println("replace size = " + addOpIndexList.size()); lastIndex = 0; for (Integer index : replaceOpIndexList) { buffer.writeSleb128(index - lastIndex); System.out.println("replace index = " + (index - lastIndex)); lastIndex = index; } for (T newItem : newItemList) { if (newItem instanceof StringData) { buffer.writeStringData((StringData) newItem); System.out.println("stringdata = " + ((StringData) newItem).value); } }
可以看到輸出為:
del size = 2 del index = 2 del index = 8 add size = 2 add index = 8 add index = 3 replace size = 2 replace index = 1 stringdata = LWorld; stringdata = World.java stringdata = nani World
與我們上述分析結果一致 ~~
那麼其他區域可以用類似的方式去驗證,patch的話也差不多,就不贅述了。
參考
- http://blog.csdn.net/jason0539/article/details/50440669
- https://www.zybuluo.com/dodola/note/554061
- https://segmentfault.com/a/1190000007652937#articleHeader0
- https://github.com/Tencent/tinker
相關文章
- Android 熱修復 Tinker 接入及原始碼淺析Android原始碼
- Android 熱修復 Tinker接入及原始碼淺析Android原始碼
- Android熱修復之Tinker整合最新詳解Android
- Android進階之Walle多渠道打包&Tinker熱修復Android
- Android 熱修復 Tinker Gradle Plugin 解析AndroidGradlePlugin
- 簡單易懂的tinker熱修復原理分析
- Android tinker熱修復——實戰接入專案Android
- Tinker熱修復整合總結
- Android tinker熱修復——從執行demo開始Android
- 你期待已久的熱修復—Tinker熱修復整合總結
- Android 熱修復 - Tinker 實現及踩過的坑Android
- Tinker 熱修復框架 簡單上手教程框架
- tinker熱修復——補丁載入合成
- Tinker原始碼分析原始碼
- 自建服務端實現Tinker熱修復服務端
- Android熱修復原理(一)熱修復框架對比和程式碼修復Android框架
- tinker熱修復——dex補丁載入過程
- 熱修復框架原始碼剖析(上)框架原始碼
- tinker熱修復——資源補丁載入過程
- Android 熱修復Android
- Tinker接入及原始碼分析(一)原始碼
- Tinker接入及原始碼分析(二)原始碼
- Tinker接入及原始碼分析(三)原始碼
- Android熱更新開源專案Tinker原始碼解析系列之三:so熱更新Android原始碼
- 微信 Tinker 負責人張紹文關於 Android 熱修復直播分享記錄Android
- Android熱修復原理Android
- 【Android 熱修復】美團Robust熱修復框架原理解析Android框架
- 你值得知道的Android 熱修復,以及熱修復原理Android
- Andfix熱修復框架原理及原始碼解析-上篇框架原始碼
- Andfix熱修復框架原理及原始碼解析-下篇框架原始碼
- Android 熱修復總結Android
- Android 原始碼分析之 AsyncTask 原始碼分析Android原始碼
- 深入探索Android熱修復技術原理讀書筆記 —— 程式碼熱修復技術Android筆記
- Flutter Android 端熱修復(熱更新)實踐FlutterAndroid
- Android 熱更新 Tinker 整合配置【詳細】Android
- Android熱修復簡單總結Android
- Android 原始碼分析之 EventBus 的原始碼解析Android原始碼
- Alibaba-AndFix Bug熱修復框架原理及原始碼解析框架原始碼