從根源上解析 Java volatile 關鍵字的實現
1、解析概覽
- 記憶體模型的相關概念
- 併發程式設計中的三個概念
- Java記憶體模型
- 深入剖析Volatile關鍵字
- 使用volatile關鍵字的場景
2、記憶體模型的相關概念
快取一致性問題。通常稱這種被多個執行緒訪問的變數為共享變數。
也就是說,如果一個變數在多個CPU中都存在快取(一般在多執行緒程式設計時才會出現),那麼就可能存在快取不一致的問題。
為了解決快取不一致性問題,通常來說有以下2種解決方法:
- 通過在匯流排加LOCK#鎖的方式
- 通過快取一致性協議
這2種方式都是硬體層面上提供的方式。
上面的方式1會有一個問題,由於在鎖住匯流排期間,其他CPU無法訪問記憶體,導致效率低下。
快取一致性協議。最出名的就是Intel 的MESI協議,MESI協議保證了每個快取中使用的共享變數的副本是一致的。它核心的思想是:當CPU寫資料時,如果發現操作的變數是共享變數,即在其他CPU中也存在該變數的副本,會發出訊號通知其他CPU將該變數的快取行置為無效狀態,因此當其他CPU需要讀取這個變數時,發現自己快取中快取該變數的快取行是無效的,那麼它就會從記憶體重新讀取。
3、併發程式設計中的三個概念
在併發程式設計中,我們通常會遇到以下三個問題:原子性問題,可見性問題,有序性問題。
3.1 原子性
原子性:即一個操作或者多個操作 要麼全部執行並且執行的過程不會被任何因素打斷,要麼就都不執行。
3.2 可見性
可見性是指當多個執行緒訪問同一個變數時,一個執行緒修改了這個變數的值,其他執行緒能夠立即看得到修改的值。
3.3 有序性
有序性:即程式執行的順序按照程式碼的先後順序執行。
從程式碼順序上看,語句1是在語句2前面的,那麼JVM在真正執行這段程式碼的時候會保證語句1一定會在語句2前面執行嗎?不一定,為什麼呢?這裡可能會發生指令重排序(Instruction Reorder)。
下面解釋一下什麼是指令重排序,一般來說,處理器為了提高程式執行效率,可能會對輸入程式碼進行優化,它不保證程式中各個語句的執行先後順序同程式碼中的順序一致,但是它會保證程式最終執行結果和程式碼順序執行的結果是一致的。
指令重排序不會影響單個執行緒的執行,但是會影響到執行緒併發執行的正確性。
也就是說,要想併發程式正確地執行,必須要保證原子性、可見性以及有序性。只要有一個沒有被保證,就有可能會導致程式執行不正確。
4、Java記憶體模型
在Java虛擬機器規範中試圖定義一種Java記憶體模型(Java Memory Model,JMM)來遮蔽各個硬體平臺和作業系統的記憶體訪問差異,以實現讓Java程式在各種平臺下都能達到一致的記憶體訪問效果。那麼Java記憶體模型規定了哪些東西呢,它定義了程式中變數的訪問規則,往大一點說是定義了程式執行的次序。注意,為了獲得較好的執行效能,Java記憶體模型並沒有限制執行引擎使用處理器的暫存器或者快取記憶體來提升指令執行速度,也沒有限制編譯器對指令進行重排序。也就是說,在java記憶體模型中,也會存在快取一致性問題和指令重排序的問題。
Java記憶體模型規定所有的變數都是存在主存當中(類似於前面說的實體記憶體),每個執行緒都有自己的工作記憶體(類似於前面的快取記憶體)。執行緒對變數的所有操作都必須在工作記憶體中進行,而不能直接對主存進行操作。並且每個執行緒不能訪問其他執行緒的工作記憶體。
4.1 原子性
在Java中,對基本資料型別的變數的讀取和賦值操作是原子性操作,即這些操作是不可被中斷的,要麼執行,要麼不執行。
請分析以下哪些操作是原子性操作:
- x = 10; //語句1
- y = x; //語句2
- x++; //語句3
- x = x + 1; //語句4
其實只有語句1是原子性操作,其他三個語句都不是原子性操作。
也就是說,只有簡單的讀取、賦值(而且必須是將數字賦值給某個變數,變數之間的相互賦值不是原子操作)才是原子操作。
從上面可以看出,Java記憶體模型只保證了基本讀取和賦值是原子性操作,如果要實現更大範圍操作的原子性,可以通過synchronized和Lock來實現。
4.2 可見性
對於可見性,Java提供了volatile關鍵字來保證可見性。
當一個共享變數被volatile修飾時,它會保證修改的值會立即被更新到主存,當有其他執行緒需要讀取時,它會去記憶體中讀取新值。
而普通的共享變數不能保證可見性,因為普通共享變數被修改之後,什麼時候被寫入主存是不確定的,當其他執行緒去讀取時,此時記憶體中可能還是原來的舊值,因此無法保證可見性。
另外,通過synchronized和Lock也能夠保證可見性,synchronized和Lock能保證同一時刻只有一個執行緒獲取鎖然後執行同步程式碼,並且在釋放鎖之前會將對變數的修改重新整理到主存當中。因此可以保證可見性。
4.3 有序性
在Java記憶體模型中,允許編譯器和處理器對指令進行重排序,但是重排序過程不會影響到單執行緒程式的執行,卻會影響到多執行緒併發執行的正確性。
在Java裡面,可以通過volatile關鍵字來保證一定的“有序性”(它能禁止進行指令重排序)。另外可以通過synchronized和Lock來保證有序性,很顯然,synchronized和Lock保證每個時刻是有一個執行緒執行同步程式碼,相當於是讓執行緒順序執行同步程式碼,自然就保證了有序性。
另外,Java記憶體模型具備一些先天的“有序性”,即不需要通過任何手段就能夠得到保證的有序性,這個通常也稱為 happens-before 原則。如果兩個操作的執行次序無法從happens-before原則推匯出來,那麼它們就不能保證它們的有序性,虛擬機器可以隨意地對它們進行重排序。
下面就來具體介紹下happens-before原則(先行發生原則):
- 程式次序規則:一個執行緒內,按照程式碼順序,書寫在前面的操作先行發生於書寫在後面的操作
- 鎖定規則:一個unLock操作先行發生於後面對同一個鎖額lock操作
- volatile變數規則:對一個變數的寫操作先行發生於後面對這個變數的讀操作
- 傳遞規則:如果操作A先行發生於操作B,而操作B又先行發生於操作C,則可以得出操作A先行發生於操作C
- 執行緒啟動規則:Thread物件的start()方法先行發生於此執行緒的每個一個動作
- 執行緒中斷規則:對執行緒interrupt()方法的呼叫先行發生於被中斷執行緒的程式碼檢測到中斷事件的發生
- 執行緒終結規則:執行緒中所有的操作都先行發生於執行緒的終止檢測,我們可以通過Thread.join()方法結束、Thread.isAlive()的返回值手段檢測到執行緒已經終止執行
- 物件終結規則:一個物件的初始化完成先行發生於他的finalize()方法的開始
這8條規則中,前4條規則是比較重要的,後4條規則都是顯而易見的。
下面我們來解釋一下前4條規則:
- 對於程式次序規則來說,我的理解就是一段程式程式碼的執行在單個執行緒中看起來是有序的。注意,雖然這條規則中提到“書寫在前面的操作先行發生於書寫在後面的操作”,這個應該是程式看起來執行的順序是按照程式碼順序執行的,因為虛擬機器可能會對程式程式碼進行指令重排序。雖然進行重排序,但是最終執行的結果是與程式順序執行的結果一致的,它只會對不存在資料依賴性的指令進行重排序。因此,在單個執行緒中,程式執行看起來是有序執行的,這一點要注意理解。事實上,這個規則是用來保證程式在單執行緒中執行結果的正確性,但無法保證程式在多執行緒中執行的正確性。
- 第二條規則也比較容易理解,也就是說無論在單執行緒中還是多執行緒中,同一個鎖如果出於被鎖定的狀態,那麼必須先對鎖進行了釋放操作,後面才能繼續進行lock操作。
- 第三條規則是一條比較重要的規則,也是後文將要重點講述的內容。直觀地解釋就是,如果一個執行緒先去寫一個變數,然後一個執行緒去進行讀取,那麼寫入操作肯定會先行發生於讀操作。
- 第四條規則實際上就是體現happens-before原則具備傳遞性。
5、深入剖析volatile關鍵字
5.1 Volatile關鍵字的兩層語義
一旦一個共享變數(類的成員變數、類的靜態成員變數)被volatile修飾之後,那麼就具備了兩層語義:
- 保證了不同執行緒對這個變數進行操作時的可見性,即一個執行緒修改了某個變數的值,這新值對其他執行緒來說是立即可見的。
- 禁止進行指令重排序。
關於可見性,先看一段程式碼,假如執行緒1先執行,執行緒2後執行:
//執行緒1 boolean stop = false; while(!stop){ doSomething(); } //執行緒2 stop = true;
這段程式碼是很典型的一段程式碼,很多人在中斷執行緒時可能都會採用這種標記辦法。但是事實上,這段程式碼會完全執行正確麼?即一定會將執行緒中斷麼?不一定,也許在大多數時候,這個程式碼能夠把執行緒中斷,但是也有可能會導致無法中斷執行緒(雖然這個可能性很小,但是隻要一旦發生這種情況就會造成死迴圈了)。
下面解釋一下這段程式碼為何有可能導致無法中斷執行緒。在前面已經解釋過,每個執行緒在執行過程中都有自己的工作記憶體,那麼執行緒1在執行的時候,會將stop變數的值拷貝一份放在自己的工作記憶體當中。
那麼當執行緒2更改了stop變數的值之後,但是還沒來得及寫入主存當中,執行緒2轉去做其他事情了,那麼執行緒1由於不知道執行緒2對stop變數的更改,因此還會一直迴圈下去。
但是用volatile修飾之後就變得不一樣了:
- 第一:使用volatile關鍵字會強制將修改的值立即寫入主存;
- 第二:使用volatile關鍵字的話,當執行緒2進行修改時,會導致執行緒1的工作記憶體中快取變數stop的快取行無效(反映到硬體層的話,就是CPU的L1或者L2快取中對應的快取行無效);
- 第三:由於執行緒1的工作記憶體中快取變數stop的快取行無效,所以執行緒1再次讀取變數stop的值時會去主存讀取。
那麼線上程2修改stop值時(當然這裡包括2個操作,修改執行緒2工作記憶體中的值,然後將修改後的值寫入記憶體),會使得執行緒1的工作記憶體中快取變數stop的快取行無效,然後執行緒1讀取時,發現自己的快取行無效,它會等待快取行對應的主存地址被更新之後,然後去對應的主存讀取最新的值。
那麼執行緒1讀取到的就是最新的正確的值。
5.2 volatile保證原子性嗎?
volatile不保證原子性,下面看一個例項。
public class Test { public volatile int inc = 0; public void increase() { inc++; } public static void main(String[] args) { final Test test = new Test(); for(int i=0;i<10;i++){ new Thread(){ public void run() { for(int j=0;j<1000;j++) test.increase(); }; }.start(); } while(Thread.activeCount()>1) //保證前面的執行緒都執行完 Thread.yield(); System.out.println(test.inc); } }
大家想一下這段程式的輸出結果是多少?也許有些朋友認為是10000。但是事實上執行它會發現每次執行結果都不一致,都是一個小於10000的數字。
這裡面就有一個誤區了,volatile關鍵字能保證可見性沒有錯,但是上面的程式錯在沒能保證原子性。可見性只能保證每次讀取的是最新的值,但是volatile沒辦法保證對變數的操作的原子性。
在前面已經提到過,自增操作是不具備原子性的,它包括讀取變數的原始值、進行加1操作、寫入工作記憶體。那麼就是說自增操作的三個子操作可能會分割開執行,就有可能導致下面這種情況出現:
假如某個時刻變數inc的值為10。
執行緒1對變數進行自增操作,執行緒1先讀取了變數inc的原始值,然後執行緒1被阻塞了;
然後執行緒2對變數進行自增操作,執行緒2也去讀取變數inc的原始值,由於執行緒1只是對變數inc進行讀取操作,而沒有對變數進行修改操作,所以不會導致執行緒2的工作記憶體中快取變數inc的快取行無效,所以執行緒2會直接去主存讀取inc的值,發現inc的值時10,然後進行加1操作,並把11寫入工作記憶體,最後寫入主存。
然後執行緒1接著進行加1操作,由於已經讀取了inc的值,注意此時線上程1的工作記憶體中inc的值仍然為10,所以執行緒1對inc進行加1操作後inc的值為11,然後將11寫入工作記憶體,最後寫入主存。
那麼兩個執行緒分別進行了一次自增操作後,inc只增加了1。
解釋到這裡,可能有朋友會有疑問,不對啊,前面不是保證一個變數在修改volatile變數時,會讓快取行無效嗎?然後其他執行緒去讀就會讀到新的值,對,這個沒錯。這個就是上面的happens-before規則中的volatile變數規則,但是要注意,執行緒1對變數進行讀取操作之後,被阻塞了的話,並沒有對inc值進行修改。然後雖然volatile能保證執行緒2對變數inc的值讀取是從記憶體中讀取的,但是執行緒1沒有進行修改,所以執行緒2根本就不會看到修改的值。
根源就在這裡,自增操作不是原子性操作,而且volatile也無法保證對變數的任何操作都是原子性的。
把上面的程式碼改成以下任何一種都可以達到效果:
採用synchronized:
public class Test { public int inc = 0; public synchronized void increase() { inc++; } public static void main(String[] args) { final Test test = new Test(); for(int i=0;i<10;i++){ new Thread(){ public void run() { for(int j=0;j<1000;j++) test.increase(); }; }.start(); } while(Thread.activeCount()>1) //保證前面的執行緒都執行完 Thread.yield(); System.out.println(test.inc); } }
採用Lock:
public class Test { public int inc = 0; Lock lock = new ReentrantLock(); public void increase() { lock.lock(); try { inc++; } finally{ lock.unlock(); } } public static void main(String[] args) { final Test test = new Test(); for(int i=0;i<10;i++){ new Thread(){ public void run() { for(int j=0;j<1000;j++) test.increase(); }; }.start(); } while(Thread.activeCount()>1) //保證前面的執行緒都執行完 Thread.yield(); System.out.println(test.inc); } }
採用AtomicInteger:
public class Test { public AtomicInteger inc = new AtomicInteger(); public void increase() { inc.getAndIncrement(); } public static void main(String[] args) { final Test test = new Test(); for(int i=0;i<10;i++){ new Thread(){ public void run() { for(int j=0;j<1000;j++) test.increase(); }; }.start(); } while(Thread.activeCount()>1) //保證前面的執行緒都執行完 Thread.yield(); System.out.println(test.inc); } }
在java 1.5的java.util.concurrent.atomic包下提供了一些原子操作類,即對基本資料型別的 自增(加1操作),自減(減1操作)、以及加法操作(加一個數),減法操作(減一個數)進行了封裝,保證這些操作是原子性操作。atomic是利用CAS來實現原子性操作的(Compare And Swap),CAS實際上是利用處理器提供的CMPXCHG指令實現的,而處理器執行CMPXCHG指令是一個原子性操作。
5.3 volatile能保證有序性嗎?
volatile能在一定程度上保證有序性。
volatile關鍵字禁止指令重排序有兩層意思:
1)當程式執行到volatile變數的讀操作或者寫操作時,在其前面的操作的更改肯定全部已經進行,且結果已經對後面的操作可見;在其後面的操作肯定還沒有進行;
2)在進行指令優化時,不能將在對volatile變數訪問的語句放在其後面執行,也不能把volatile變數後面的語句放到其前面執行。
舉個例子:
//x、y為非volatile變數 //flag為volatile變數 x = 2; //語句1 y = 0; //語句2 flag = true; //語句3 x = 4; //語句4 y = -1; //語句5
由於flag變數為volatile變數,那麼在進行指令重排序的過程的時候,不會將語句3放到語句1、語句2前面,也不會講語句3放到語句4、語句5後面。但是要注意語句1和語句2的順序、語句4和語句5的順序是不作任何保證的。
並且volatile關鍵字能保證,執行到語句3時,語句1和語句2必定是執行完畢了的,且語句1和語句2的執行結果對語句3、語句4、語句5是可見的。
5.4 volatile的原理和實現機制
這裡探討一下volatile到底如何保證可見性和禁止指令重排序的。
下面這段話摘自《深入理解Java虛擬機器》:
“觀察加入volatile關鍵字和沒有加入volatile關鍵字時所生成的彙編程式碼發現,加入volatile關鍵字時,會多出一個lock字首指令”
lock字首指令實際上相當於一個記憶體屏障(也成記憶體柵欄),記憶體屏障會提供3個功能:
- 它確保指令重排序時不會把其後面的指令排到記憶體屏障之前的位置,也不會把前面的指令排到記憶體屏障的後面;即在執行到記憶體屏障這句指令時,在它前面的操作已經全部完成;
- 它會強制將對快取的修改操作立即寫入主存;
- 如果是寫操作,它會導致其他CPU中對應的快取行無效。
6、使用volatile關鍵字的場景
synchronized關鍵字是防止多個執行緒同時執行一段程式碼,那麼就會很影響程式執行效率,而volatile關鍵字在某些情況下效能要優於synchronized,但是要注意volatile關鍵字是無法替代synchronized關鍵字的,因為volatile關鍵字無法保證操作的原子性。通常來說,使用volatile必須具備以下2個條件:
- 對變數的寫操作不依賴於當前值(比如++操作,上面有例子)
- 該變數沒有包含在具有其他變數的不變式中
實際上,這些條件表明,可以被寫入 volatile 變數的這些有效值獨立於任何程式的狀態,包括變數的當前狀態。
事實上,我的理解就是上面的2個條件需要保證操作是原子性操作,才能保證使用volatile關鍵字的程式在併發時能夠正確執行。
下面列舉幾個Java中使用volatile的幾個場景。
狀態標記量
volatile boolean flag = false; while(!flag){ doSomething(); } public void setFlag() { flag = true; }
volatile boolean inited = false; //執行緒1: context = loadContext(); inited = true; //執行緒2: while(!inited ){ sleep() } doSomethingwithconfig(context);
double check
class Singleton{ private volatile static Singleton instance = null; private Singleton() { } public static Singleton getInstance() { if(instance==null) { synchronized (Singleton.class) { if(instance==null) instance = new Singleton(); } } return instance; } }
至於為何需要這麼寫請參考:
《Java 中的雙重檢查(Double-Check)》http://blog.csdn.net/dl88250/article/details/5439024和http://www.iteye.com/topic/652440
相關文章
- Java volatile關鍵字解析Java
- Java併發—— 關鍵字volatile解析Java
- volatile關鍵字解析
- 深入解析volatile關鍵字
- Java關鍵字volatile的理解Java
- Java volatile關鍵字作用Java
- Java併發程式設計:volatile關鍵字解析Java程式設計
- Java之併發程式設計:volatile關鍵字解析Java程式設計
- 深入瞭解 Java 的 volatile 關鍵字Java
- java併發之volatile關鍵字Java
- Volatile關鍵字
- volatile 關鍵字
- 深入理解Java中的volatile關鍵字Java
- Java記憶體模型——volatile關鍵字Java記憶體模型
- Volatile關鍵字剖析
- Java併發程式設計volatile關鍵字Java程式設計
- java多執行緒4:volatile關鍵字Java執行緒
- 深入彙編指令理解Java關鍵字volatileJava
- java記憶體模型及volatile關鍵字Java記憶體模型
- java併發程式設計:volatile關鍵字Java程式設計
- Java多執行緒(二)volatile關鍵字Java執行緒
- java併發程式設計——volatile關鍵字Java程式設計
- Java面試官最愛問的volatile關鍵字Java面試
- volatile關鍵字淺析
- 快速理解 volatile 關鍵字
- Java面試題:請談談Java中的volatile關鍵字?Java面試題
- volatile 關鍵字的工作機制
- Java面試題集錦(1):volatile關鍵字Java面試題
- Java 面試官最喜歡問的關鍵字 volatileJava面試
- 一個具體的例子學習Java volatile關鍵字Java
- 執行緒安全(上)–徹底搞懂volatile關鍵字執行緒
- 執行緒安全(上)--徹底搞懂volatile關鍵字執行緒
- C語言中volatile關鍵字的作用C語言
- Java多執行緒學習(三)volatile關鍵字Java執行緒
- Java併發——關鍵字synchronized解析Javasynchronized
- 兩張圖理解volatile關鍵字
- Volatile關鍵字&&DCL單例模式,volatile 和 synchronized 的區別單例模式synchronized
- 全面理解Java記憶體模型(JMM)及volatile關鍵字Java記憶體模型
- Java併發專題(三)深入理解volatile關鍵字Java