Android效能優化之電量篇
Google近期在Udacity上釋出了Android效能優化的線上課程,分別從渲染,運算與記憶體,電量幾個方面介紹瞭如何去優化效能,這些課程是Google之前在Youtube上釋出的Android效能優化典範專題課程的細化與補充。
下面是電量篇章的學習筆記,部分內容與前面的效能優化典範有重合,歡迎大家一起學習交流!
1)Understanding Battery Drain
手機各個硬體模組的耗電量是不一樣的,有些模組非常耗電,而有些模組則相對顯得耗電量小很多。
電量消耗的計算與統計是一件麻煩而且矛盾的事情,記錄電量消耗本身也是一個費電量的事情。唯一可行的方案是使用第三方監測電量的裝置,這樣才能夠獲取到真實的電量消耗。
當裝置處於待機狀態時消耗的電量是極少的,以N5為例,開啟飛航模式,可以待機接近1個月。可是點亮螢幕,硬體各個模組就需要開始工作,這會需要消耗很多電量。
使用WakeLock或者JobScheduler喚醒裝置處理定時的任務之後,一定要及時讓裝置回到初始狀態。每次喚醒蜂窩訊號進行資料傳遞,都會消耗很多電量,它比WiFi等操作更加的耗電。
2)Battery Historian
Battery Historian是Android 5.0開始引入的新API。通過下面的指令,可以得到裝置上的電量消耗資訊:
$ adb shell dumpsys batterystats > xxx.txt //得到整個裝置的電量消耗資訊 $ adb shell dumpsys batterystats > com.package.name > xxx.txt //得到指定app相關的電量消耗資訊
得到了原始的電量消耗資料之後,我們需要通過Google編寫的一個python指令碼把資料資訊轉換成可讀性更好的html檔案:
$ python historian.py xxx.txt > xxx.html
開啟這個轉換過後的html檔案,可以看到類似TraceView生成的列表資料,這裡的資料資訊量很大,這裡就不展開了。
3)Track Battery Status & Battery Manager
我們可以通過下面的程式碼來獲取手機的當前充電狀態:
// It is very easy to subscribe to changes to the battery state, but you can get the current // state by simply passing null in as your receiver. Nifty, isn't that? IntentFilter filter = new IntentFilter(Intent.ACTION_BATTERY_CHANGED); Intent batteryStatus = this.registerReceiver(null, filter); int chargePlug = batteryStatus.getIntExtra(BatteryManager.EXTRA_PLUGGED, -1); boolean acCharge = (chargePlug == BatteryManager.BATTERY_PLUGGED_AC); if (acCharge) { Log.v(LOG_TAG,“The phone is charging!”); }
在上面的例子演示瞭如何立即獲取到手機的充電狀態,得到充電狀態資訊之後,我們可以有針對性的對部分程式碼做優化。比如我們可以判斷只有當前手機為AC充電狀態時 才去執行一些非常耗電的操作。
/** * This method checks for power by comparing the current battery state against all possible * plugged in states. In this case, a device may be considered plugged in either by USB, AC, or * wireless charge. (Wireless charge was introduced in API Level 17.) */ private boolean checkForPower() { // It is very easy to subscribe to changes to the battery state, but you can get the current // state by simply passing null in as your receiver. Nifty, isn't that? IntentFilter filter = new IntentFilter(Intent.ACTION_BATTERY_CHANGED); Intent batteryStatus = this.registerReceiver(null, filter); // There are currently three ways a device can be plugged in. We should check them all. int chargePlug = batteryStatus.getIntExtra(BatteryManager.EXTRA_PLUGGED, -1); boolean usbCharge = (chargePlug == BatteryManager.BATTERY_PLUGGED_USB); boolean acCharge = (chargePlug == BatteryManager.BATTERY_PLUGGED_AC); boolean wirelessCharge = false; if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR1) { wirelessCharge = (chargePlug == BatteryManager.BATTERY_PLUGGED_WIRELESS); } return (usbCharge || acCharge || wirelessCharge); }
4)Wakelock and Battery Drain
高效的保留更多的電量與不斷促使使用者使用你的App會消耗電量,這是矛盾的選擇題。不過我們可以使用一些更好的辦法來平衡兩者。
假設你的手機裡面裝了大量的社交類應用,即使手機處於待機狀態,也會經常被這些應用喚醒用來檢查同步新的資料資訊。Android會不斷關閉各種硬體來延長手機的待機時間,首先螢幕會逐漸變暗直至關閉,然後CPU進入睡眠,這一切操作都是為了節約寶貴的電量資源。但是即使在這種睡眠狀態下,大多數應用還是會嘗試進行工作,他們將不斷的喚醒手機。一個最簡單的喚醒手機的方法是使用PowerManager.WakeLock的API來保持CPU工作並防止螢幕變暗關閉。這使得手機可以被喚醒,執行工作,然後回到睡眠狀態。知道如何獲取WakeLock是簡單的,可是及時釋放WakeLock也是非常重要的,不恰當的使用WakeLock會導致嚴重錯誤。例如網路請求的資料返回時間不確定,導致本來只需要10s的事情一直等待了1個小時,這樣會使得電量白白浪費了。這也是為何使用帶超時引數的wakelock.acquice()方法是很關鍵的。
但是僅僅設定超時並不足夠解決問題,例如設定多長的超時比較合適?什麼時候進行重試等等?解決上面的問題,正確的方式可能是使用非精準定時器。通常情況下,我們會設定一個時間進行某個操作,但是動態修改這個時間也許會更好。例如,如果有另外一個程式需要比你設定的時間晚5分鐘喚醒,最好能夠等到那個時候,兩個任務捆綁一起同時進行,這就是非精確定時器的核心工作原理。我們可以定製計劃的任務,可是系統如果檢測到一個更好的時間,它可以推遲你的任務,以節省電量消耗。
這正是JobScheduler API所做的事情。它會根據當前的情況與任務,組合出理想的喚醒時間,例如等到正在充電或者連線到WiFi的時候,或者集中任務一起執行。我們可以通過這個API實現很多免費的排程演算法。
5)Network and Battery Drain
下面內容來自官方Training文件中高效下載章節關於手機(Radio)蜂窩訊號對電量消耗的介紹。
通常情況下,使用3G行動網路傳輸資料,電量的消耗有三種狀態:
Full power: 能量最高的狀態,行動網路連線被啟用,允許裝置以最大的傳輸速率進行操作。
Low power: 一種中間狀態,對電量的消耗差不多是Full power狀態下的50%。
Standby: 最低的狀態,沒有資料連線需要傳輸,電量消耗最少。
下圖是一個典型的3G Radio State Machine的圖示
總之,為了減少電量的消耗,在蜂窩行動網路下,最好做到批量執行網路請求,儘量避免頻繁的間隔網路請求。
通過前面學習到的Battery Historian我們可以得到裝置的電量消耗資料,如果資料中的移動蜂窩網路(Mobile Radio)電量消耗呈現下面的情況,間隔很小,又頻繁斷斷續續的出現,說明電量消耗效能很不好:
經過優化之後,如果呈現下面的圖示,說明電量消耗的效能是良好的:
另外WiFi連線下,網路傳輸的電量消耗要比行動網路少很多,應該儘量減少行動網路下的資料傳輸,多在WiFi環境下傳輸資料。
那麼如何才能夠把任務快取起來,做到批量化執行呢?下面就輪到Job Scheduler出場了。
6)Using Job Scheduler
使用Job Scheduler,應用需要做的事情就是判斷哪些任務是不緊急的,可以交給Job Scheduler來處理,Job Scheduler集中處理收到的任務,選擇合適的時間,合適的網路,再一起進行執行。
下面是使用Job Scheduler的一段簡要示例,需要先有一個JobService:
public class MyJobService extends JobService { private static final String LOG_TAG = "MyJobService"; @Override public void onCreate() { super.onCreate(); Log.i(LOG_TAG, "MyJobService created"); } @Override public void onDestroy() { super.onDestroy(); Log.i(LOG_TAG, "MyJobService destroyed"); } @Override public boolean onStartJob(JobParameters params) { // This is where you would implement all of the logic for your job. Note that this runs // on the main thread, so you will want to use a separate thread for asynchronous work // (as we demonstrate below to establish a network connection). // If you use a separate thread, return true to indicate that you need a "reschedule" to // return to the job at some point in the future to finish processing the work. Otherwise, // return false when finished. Log.i(LOG_TAG, "Totally and completely working on job " + params.getJobId()); // First, check the network, and then attempt to connect. if (isNetworkConnected()) { new SimpleDownloadTask() .execute(params); return true; } else { Log.i(LOG_TAG, "No connection on job " + params.getJobId() + "; sad face"); } return false; } @Override public boolean onStopJob(JobParameters params) { // Called if the job must be stopped before jobFinished() has been called. This may // happen if the requirements are no longer being met, such as the user no longer // connecting to WiFi, or the device no longer being idle. Use this callback to resolve // anything that may cause your application to misbehave from the job being halted. // Return true if the job should be rescheduled based on the retry criteria specified // when the job was created or return false to drop the job. Regardless of the value // returned, your job must stop executing. Log.i(LOG_TAG, "Whelp, something changed, so I'm calling it on job " + params.getJobId()); return false; } /** * Determines if the device is currently online. */ private boolean isNetworkConnected() { ConnectivityManager connectivityManager = (ConnectivityManager) getSystemService(Context.CONNECTIVITY_SERVICE); NetworkInfo networkInfo = connectivityManager.getActiveNetworkInfo(); return (networkInfo != null && networkInfo.isConnected()); } /** * Uses AsyncTask to create a task away from the main UI thread. This task creates a * HTTPUrlConnection, and then downloads the contents of the webpage as an InputStream. * The InputStream is then converted to a String, which is logged by the * onPostExecute() method. */ private class SimpleDownloadTask extends AsyncTask<JobParameters, Void, String> { protected JobParameters mJobParam; @Override protected String doInBackground(JobParameters... params) { // cache system provided job requirements mJobParam = params[0]; try { InputStream is = null; // Only display the first 50 characters of the retrieved web page content. int len = 50; URL url = new URL("https://www.google.com"); HttpURLConnection conn = (HttpURLConnection) url.openConnection(); conn.setReadTimeout(10000); //10sec conn.setConnectTimeout(15000); //15sec conn.setRequestMethod("GET"); //Starts the query conn.connect(); int response = conn.getResponseCode(); Log.d(LOG_TAG, "The response is: " + response); is = conn.getInputStream(); // Convert the input stream to a string Reader reader = null; reader = new InputStreamReader(is, "UTF-8"); char[] buffer = new char[len]; reader.read(buffer); return new String(buffer); } catch (IOException e) { return "Unable to retrieve web page."; } } @Override protected void onPostExecute(String result) { jobFinished(mJobParam, false); Log.i(LOG_TAG, result); } } }
然後模擬通過點選Button觸發N個任務,交給JobService來處
public class FreeTheWakelockActivity extends ActionBarActivity { public static final String LOG_TAG = "FreeTheWakelockActivity"; TextView mWakeLockMsg; ComponentName mServiceComponent; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_wakelock); mWakeLockMsg = (TextView) findViewById(R.id.wakelock_txt); mServiceComponent = new ComponentName(this, MyJobService.class); Intent startServiceIntent = new Intent(this, MyJobService.class); startService(startServiceIntent); Button theButtonThatWakelocks = (Button) findViewById(R.id.wakelock_poll); theButtonThatWakelocks.setText(R.string.poll_server_button); theButtonThatWakelocks.setOnClickListener(new View.OnClickListener() { @Override public void onClick(View v) { pollServer(); } }); } /** * This method polls the server via the JobScheduler API. By scheduling the job with this API, * your app can be confident it will execute, but without the need for a wake lock. Rather, the * API will take your network jobs and execute them in batch to best take advantage of the * initial network connection cost. * * The JobScheduler API works through a background service. In this sample, we have * a simple service in MyJobService to get you started. The job is scheduled here in * the activity, but the job itself is executed in MyJobService in the startJob() method. For * example, to poll your server, you would create the network connection, send your GET * request, and then process the response all in MyJobService. This allows the JobScheduler API * to invoke your logic without needed to restart your activity. * * For brevity in the sample, we are scheduling the same job several times in quick succession, * but again, try to consider similar tasks occurring over time in your application that can * afford to wait and may benefit from batching. */ public void pollServer() { JobScheduler scheduler = (JobScheduler) getSystemService(Context.JOB_SCHEDULER_SERVICE); for (int i=0; i<10; i++) { JobInfo jobInfo = new JobInfo.Builder(i, mServiceComponent) .setMinimumLatency(5000) // 5 seconds .setOverrideDeadline(60000) // 60 seconds (for brevity in the sample) .setRequiredNetworkType(JobInfo.NETWORK_TYPE_ANY) // WiFi or data connections .build(); mWakeLockMsg.append("Scheduling job " + i + "!\n"); scheduler.schedule(jobInfo); } } }
相關文章
- 八、Android效能優化之電量優化(二)Android優化
- Android效能優化篇之計算效能優化Android優化
- Android效能優化之渲染篇Android優化
- Android效能優化篇之服務優化Android優化
- Android 效能優化(九)之不可忽視的電量Android優化
- Android效能優化之運算篇Android優化
- Android效能優化之記憶體篇Android優化記憶體
- Android效能優化(1)—webview優化篇Android優化WebView
- [Android]電量優化之app演算法Android優化APP演算法
- Android Note - 電量優化Android優化
- Android效能優化之佈局優化Android優化
- 六、Android效能優化之UI卡頓分析之渲染效能優化Android優化UI
- Android效能優化篇之記憶體優化--記憶體洩漏Android優化記憶體
- 九、Android效能優化之網路優化Android優化
- Android 效能優化之記憶體優化Android優化記憶體
- Android 效能優化(八)之網路優化Android優化
- Linux 效能優化之 IO 篇Linux優化
- Linux 效能優化之 cup 篇Linux優化
- Linux 效能優化之 CPU 篇 ----- 套路篇Linux優化
- 十四、Android效能優化之ServiceAndroid優化
- 效能優化篇優化
- Android 效能優化(十二)之我為什麼寫效能優化Android優化
- Android效能優化篇:從程式碼角度進行優化Android優化
- Android App 效能優化系列結語篇AndroidAPP優化
- iOS效能優化系列篇之“列表流暢度優化”iOS優化
- iOS效能優化系列篇之“優化總體原則”iOS優化
- Android 效能優化(二)之佈局優化面面觀Android優化
- Android效能優化之被忽視的優化點Android優化
- 十六、Android效能優化之threadAndroid優化thread
- Android App 優化之效能分析工具AndroidAPP優化
- Android效能優化之如何避免OverdrawAndroid優化
- IOS效能優化篇iOS優化
- Linux 效能優化之 記憶體 篇Linux優化記憶體
- 前端效能JQuery篇之選擇器優化前端jQuery優化
- Android效能優化----卡頓優化Android優化
- Android 效能優化(四)之記憶體優化實戰Android優化記憶體
- Android深度效能優化--記憶體優化(一篇就夠)Android優化記憶體
- App電量優化APP優化