leetcode 之 Longest Valid Parentheses

fangjian1204發表於2014-08-18

leetcode中和括號匹配相關的問題共有三個,分別是:

Valid Parentheses

 

Given a string containing just the characters '('')''{''}''[' and ']', determine if the input string is valid.

The brackets must close in the correct order, "()" and "()[]{}" are all valid but "(]" and "([)]" are not.

該提比較簡單,正常情況下直接用堆疊就可以了,但有一次面試要求必須要用遞迴寫,其實也很簡單,具體參考這裡


Longest Valid Parentheses

 

Given a string containing just the characters '(' and ')', find the length of the longest valid (well-formed) parentheses substring.

For "(()", the longest valid parentheses substring is "()", which has length = 2.

Another example is ")()())", where the longest valid parentheses substring is "()()", which has length = 4.

該題目使用動態規劃來計算,dp[i]表示到第i個位置的最大長度,由於匹配的括號必須是連續的,所以,如果有j < i 且j和i匹配,則dp[i] = (i-j+1)+dp[j]。

從轉移方程來看,好像是二維DP,但是可以使用堆疊來轉化為一維的,簡單來說,

就是遇到左括號就進棧,遇到右括號就出棧,而出棧的位置就是面的j,所以不需

要進行二維掃描就可定位到j。

class Solution {
public:
    int longestValidParentheses(string s) {
    	int length = s.size(),i,maxLength = 0;
    	vector<int> dp(length,0);
    	stack<int> stk; // 左括號的下標
    	for(i = 0; i < length;++i)
    	{
    		if(s[i] == '(')stk.push(i);
    		else
    		{
    			if(!stk.empty())
    			{
    				int start = stk.top();
    				stk.pop();
    				dp[i] = i - start + 1;
    				if(start > 0)dp[i] += dp[start-1];
    				if(dp[i] > maxLength)maxLength = dp[i];
    			}
    		}
    	}
    	return maxLength;
    }
};


Generate Parentheses

  

Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.

For example, given n = 3, a solution set is:

"((()))", "(()())", "(())()", "()(())", "()()()"

該問題是著名的卡特蘭數,具體參考該部落格

相關文章