常用的機器學習&資料探勘知識(點)
常用的資料探勘&機器學習知識(點)
MSE(MeanSquare Error 均方誤差),LMS(Least MeanSquare 最小均方),LSM(Least Square Methods 最小二乘法),MLE(Maximum LikelihoodEstimation最大似然估計),QP(QuadraticProgramming 二次規劃), CP(ConditionalProbability條件概率),JP(Joint Probability 聯合概率),MP(Marginal Probability邊緣概率),Bayesian Formula(貝葉斯公式),L1 /L2Regularization(L1/L2正則,以及更多的,現在比較火的L2.5正則等),GD(Gradient Descent 梯度下降),SGD(Stochastic GradientDescent 隨機梯度下降),Eigenvalue(特徵值),Eigenvector(特徵向量),QR-decomposition(QR分解),Quantile (分位數),Covariance(協方差矩陣)。
Discrete Distribution(離散型分佈):Bernoulli Distribution/Binomial(貝努利分步/二項分佈),Negative BinomialDistribution(負二項分佈),Multinomial Distribution(多式分佈),Geometric Distribution(幾何分佈),Hypergeometric Distribution(超幾何分佈),Poisson Distribution (泊松分佈)
ContinuousDistribution (連續型分佈):Uniform Distribution(均勻分佈),Normal Distribution/GaussianDistribution(正態分佈/高斯分佈),Exponential Distribution(指數分佈),Lognormal Distribution(對數正態分佈),Gamma Distribution(Gamma分佈),Beta Distribution(Beta分佈),Dirichlet Distribution(狄利克雷分佈),Rayleigh Distribution(瑞利分佈),Cauchy Distribution(柯西分佈),Weibull Distribution (韋伯分佈)
Three Sampling Distribution(三大抽樣分佈):Chi-square Distribution(卡方分佈),t-distribution(t-distribution),F-distribution(F-分佈)
MissingValue Imputation(缺失值填充),Discretization(離散化),Mapping(對映),Normalization(歸一化/標準化)。
Sampling(取樣):
SimpleRandom Sampling(簡單隨機取樣),Offline Sampling(離線等可能K取樣),Online Sampling(線上等可能K取樣),Ratio-based Sampling(等比例隨機取樣),Acceptance-rejection Sampling(接受-拒絕取樣),Importance Sampling(重要性取樣),MCMC(Markov Chain MonteCarlo 馬爾科夫蒙特卡羅取樣演算法:Metropolis-Hasting& Gibbs)。
K-Means,K-Mediods,二分K-Means,FK-Means,Canopy,Spectral-KMeans(譜聚類),GMM-EM(混合高斯模型-期望最大化演算法解決),K-Pototypes,CLARANS(基於劃分),BIRCH(基於層次),CURE(基於層次),DBSCAN(基於密度),CLIQUE(基於密度和基於網格),2014年Science上的密度聚類演算法等
Clustering EffectivenessEvaluation(聚類效果評估):
Purity(純度),RI(Rand Index,芮氏指標),ARI(Adjusted Rand Index,調整的芮氏指標),NMI(NormalizedMutual Information,規範化互資訊),F-meaure(F測量)等。
Classification&Regression(分類&迴歸):
LR(LinearRegression 線性迴歸),LR(Logistic Regression邏輯迴歸),SR(SoftmaxRegression 多分類邏輯迴歸),GLM(Generalized LinearModel 廣義線性模型),RR(Ridge Regression 嶺迴歸/L2正則最小二乘迴歸),LASSO(Least AbsoluteShrinkage and Selectionator Operator L1正則最小二乘迴歸), RF(隨機森林),DT(Decision Tree決策樹),GBDT(Gradient BoostingDecision Tree 梯度下降決策樹),CART(Classification AndRegression Tree 分類迴歸樹),KNN(K-Nearest Neighbor K近鄰),SVM(Support Vector Machine,支援向量機,包括SVC(分類)&SVR(迴歸)),KF(Kernel Function 核函式Polynomial KernelFunction 多項式核函式、Guassian Kernel Function 高斯核函式/Radial Basis Function RBF徑向基函式、String Kernel Function 字串核函式)、 NB(Naive Bayes 樸素貝葉斯),BN(BayesianNetwork/Bayesian Belief Network/Belief Network 貝葉斯網路/貝葉斯信度網路/信念網路),LDA(Linear DiscriminantAnalysis/Fisher Linear Discriminant 線性判別分析/Fisher線性判別),EL(Ensemble Learning整合學習Boosting,Bagging,Stacking),AdaBoost(AdaptiveBoosting 自適應增強),MEM(Maximum Entropy Model最大熵模型)
Classification EffectivenessEvaluation(分類效果評估):
ConfusionMatrix(混淆矩陣),Precision(精確度),Recall(召回率),Accuracy(準確率),F-score(F得分),ROC Curve(ROC曲線),AUC(AUC面積),Lift Curve(Lift曲線) ,KS Curve(KS曲線)。
PGM(ProbabilisticGraphical Models概率圖模型):
BN(BayesianNetwork/Bayesian Belief Network/ Belief Network 貝葉斯網路/貝葉斯信度網路/信念網路),MC(Markov Chain 馬爾科夫鏈),HMM(Hidden MarkovModel 馬爾科夫模型),MEMM(Maximum EntropyMarkov Model 最大熵馬爾科夫模型),CRF(Conditional RandomField 條件隨機場),MRF(Markov RandomField 馬爾科夫隨機場)。
ANN(ArtificialNeural Network 人工神經網路),BP(Error Back Propagation 誤差反向傳播),HN(Hopfield Network),
RNN(Recurrent Neural Network,迴圈神經網路),SRN(Simple Recurrent Network,簡單的迴圈神經網路),ESN(Echo State Network,回聲狀態網路),LSTM(Long Short Term Memory 長短記憶神經網路),CW-RNN(Clockwork
Recurrent Neural Network,時鐘驅動迴圈神經網路,2014ICML)等。
Auto-encoder(自動編碼器),SAE(Stacked Auto-encoders堆疊自動編碼器:Sparse Auto-encoders稀疏自動編碼器、Denoising Auto-encoders去噪自動編碼器、ContractiveAuto-encoders 收縮自動編碼器),RBM(Restricted BoltzmannMachine 受限玻爾茲曼機),DBN(Deep BeliefNetwork 深度信念網路),CNN(Convolutional NeuralNetwork 卷積神經網路),Word2Vec(詞向量學習模型)。
LDA(LinearDiscriminant Analysis/Fisher Linear Discriminant 線性判別分析/Fish線性判別),PCA(Principal ComponentAnalysis 主成分分析),ICA(Independent ComponentAnalysis 獨立成分分析),SVD(Singular ValueDecomposition 奇異值分解),FA(Factor Analysis 因子分析法)。
VSM(Vector SpaceModel向量空間模型),Word2Vec(詞向量學習模型),TF(Term Frequency詞頻),TF-IDF(TermFrequency-Inverse Document Frequency 詞頻-逆向文件頻率),MI(Mutual Information 互資訊),ECE(Expected CrossEntropy 期望交叉熵),QEMI(二次資訊熵),IG(Information Gain 資訊增益),IGR(InformationGain Ratio 資訊增益率),Gini(基尼係數),x2 Statistic(x2統計量),TEW(Text EvidenceWeight文字證據權),OR(OddsRatio 優勢率),N-Gram Model,LSA(LatentSemantic Analysis 潛在語義分析),PLSA(ProbabilisticLatent Semantic Analysis 基於概率的潛在語義分析),LDA(Latent DirichletAllocation 潛在狄利克雷模型),SLM(StatisticalLanguage Model,統計語言模型),NPLM(NeuralProbabilistic Language Model,神經概率語言模型),CBOW(Continuous Bag of Words Model,連續詞袋模型),Skip-gram(Skip-gramModel)等。
Apriori,FP-growth(FrequencyPattern Tree Growth 頻繁模式樹生長演算法),AprioriAll,Spade。
DBR(Demographic-basedRecommendation 基於人口統計學的推薦),CBR(Context-based Recommendation 基於內容的推薦),CF(Collaborative Filtering協同過濾),UCF(User-based CollaborativeFiltering Recommendation 基於使用者的協同過濾推薦),ICF(Item-based CollaborativeFiltering Recommendation 基於專案的協同過濾推薦)。
SimilarityMeasure&Distance Measure(相似性與距離度量):
EuclideanDistance(歐式距離),Manhattan Distance(曼哈頓距離),Chebyshev Distance(切比雪夫距離),Minkowski Distance(閔可夫斯基距離),Standardized EuclideanDistance(標準化歐氏距離),Mahalanobis Distance(馬氏距離),Cos(Cosine 餘弦),Hamming Distance/EditDistance(漢明距離/編輯距離),Jaccard Distance(傑卡德距離),Correlation CoefficientDistance(相關係數距離),Information Entropy(資訊熵),KL(Kullback-LeiblerDivergence KL散度/Relative Entropy 相對熵)。
Non-constrained Optimization(無約束優化):Cyclic Variable Methods(變數輪換法),Pattern Search Methods(模式搜尋法),Variable Simplex Methods(可變單純形法),Gradient Descent Methods(梯度下降法),Newton Methods(牛頓法),Quasi-Newton Methods(擬牛頓法),Conjugate GradientMethods(共軛梯度法)。
ConstrainedOptimization(有約束優化):Approximation ProgrammingMethods(近似規劃法),Feasible DirectionMethods(可行方向法),Penalty Function Methods(罰函式法),Multiplier Methods(乘子法)。
HeuristicAlgorithm(啟發式演算法),SA(Simulated Annealing,模擬退火演算法),GA(genetic algorithm遺傳演算法)
MutualInformation(互資訊),Document Frequence(文件頻率),Information Gain(資訊增益),Chi-squared Test(卡方檢驗),Gini(基尼係數)。
Statistic-based(基於統計),Distance-based(基於距離),Density-based(基於密度),Clustering-based(基於聚類)。
Pointwise:McRank;
Pairwise:RankingSVM,RankNet,Frank,RankBoost;
Listwise:AdaRank,SoftRank,LamdaMART;
MPI,Hadoop生態圈,Spark,BSP,Weka,Mahout,Scikit-learn,PyBrain…
以及一些具體的業務場景與case等。
後面有機會將針對這些進行知識(面)的總結,有錯誤請指正...
轉載請說明出處..........
相關文章
- 資料探勘比賽預備知識
- 【大資料】你務必要搞清楚的十大資料探勘知識點大資料
- vue常用的知識點Vue
- 《資料探勘:實用機器學習技術》——資料探勘、機器學習一舉兩得機器學習
- 機器學習、資料探勘及其他機器學習
- 機器學習知識點整理(三)機器學習
- webpack常用知識點Web
- SVN - 常用知識點
- 資料探勘——認識資料
- Flow 常用知識點整理
- Angular常用知識點梳理Angular
- 五個UICollectionView常用的知識點UIView
- 機器學習和資料探勘的推薦書單機器學習
- 常用資料探勘演算法演算法
- 資料探勘和知識發現的技術、方法及應用
- 資料探勘中常用的取樣方法
- Koa 框架常用知識點整理框架
- RabbitMQ 常用知識點總結MQ
- Python常用知識點一二Python
- docker常用知識點總結Docker
- mysql 常用知識點總結MySql
- PLSQL一些常用的知識點SQL
- [機器學習&資料探勘]SVM---核函式機器學習函式
- .NET資料探勘與機器學習開源框架機器學習框架
- 大資料學習,涉及的知識點大資料
- 機器學習vs深度學習及其知識點機器學習深度學習
- ES6常用知識點概述
- 如何向外行解釋機器學習和資料探勘機器學習
- ShifuML/shifu: Hadoop上的機器學習和資料探勘框架Hadoop機器學習框架
- Flutter 資料庫sqflite使用知識點Flutter資料庫
- 資料庫相關知識點提要資料庫
- java Web知識點--資料庫(3)JavaWeb資料庫
- 機器學習知識點(十)馬爾可夫鏈機器學習馬爾可夫
- MySQL 常用易混淆知識點總結MySql
- iOS 需要使用卻不常用的知識點iOS
- jQuery常用的一些知識點總結jQuery
- 面試開發常用的 JavaScript 知識點總結面試JavaScript
- 資料探勘,人工智慧,機器學習會議總結人工智慧機器學習