訊息佇列(一)
一、訊息佇列概述
訊息佇列中介軟體是分散式系統中重要的元件,主要解決應用耦合、非同步訊息、流量削峰等問題。實現高效能、高可用、可伸縮和最終一致性架構,是大型分散式系統不可缺少的中介軟體。
目前生產環境中,使用較多的訊息佇列有ActiveMQ、RabbitMQ、ZeroMQ、Kafka、MetaMQ、RocketMQ等。
二、訊息佇列應用場景
以下介紹訊息佇列在實際應用中常用的使用場景。非同步處理、應用解耦、流量削峰和訊息通訊四個場景。
2.1非同步處理
場景說明:使用者註冊後,需要傳送郵件和註冊簡訊。傳統的做法有兩種:1、序列的方式;2、並行的方式。
(1)序列方式:將註冊資訊寫入資料庫成功後,傳送註冊郵件,再傳送註冊簡訊。以上三個任務全部完成後,返回給客戶端。
(2)並行方式:將註冊資訊寫入資料庫成功後,傳送註冊郵件的同時,傳送註冊簡訊。以上三個任務完成後,返回給客戶端。與序列的差別是,並行的方式可以提高處理的時間。
假設三個業務節點每個使用50毫秒鐘,不考慮網路等其他開銷,則序列方式的時間是1150毫秒,並行的時間可能是100毫秒。
因為CPU在單位時間裡處理的請求數是一定的,假設CPU在1秒內吞吐量是100次,則序列方式1秒CPU可處理的請求量是7次(1000/150),並行方式處理的請求量是10次(1000/100)。
小結:如以上案例描述,傳統的方式系統的效能(併發量、吞吐量、響應時間)會有瓶頸,如何解決這個問題呢?
引入訊息佇列,將不是必須的業務邏輯,非同步處理。改造後的架構如下:
按照以上約定,使用者的響應時間相當於是註冊資訊寫入資料庫的時間,也就是50毫秒。註冊郵件、傳送簡訊寫入訊息佇列後,直接返回,因為寫入訊息佇列的速度很快,基本可以忽略,因此使用者的響應時間可能是50毫秒。因此架構改變後,系統的吞吐量提高到20每秒20QPS,比序列提高了3倍,比並行提高了2倍。
2.2應用解耦
場景說明:使用者下單後,訂單系統需要通知庫存系統。傳統的做法是,訂單系統呼叫庫存系統的介面。如下圖:
傳統模式的缺點:
- 假如庫存系統無法訪問,則訂單減庫存放將失敗,從而導致訂單失敗;
- 訂單系統與庫存系統耦合。
如何解決以上問題呢?引入應用訊息佇列後的方案,如下圖:
- 訂單系統:使用者下單後,訂單系統完成持久化處理,將訊息寫入訊息佇列,返回使用者訂單下單成功。
- 庫存系統:訂閱下單的訊息,採用拉/推的方式,獲取下單資訊,庫存系統根據下單資訊,進行庫存操作。
- 假如:在下單時庫存系統不能正常使用,也不會影響正常下單後,因為下單後,訂單系統寫入訊息佇列就不再關心其他的後續操作了。於是,實現了訂單系統與庫存系統的應用解耦。
2.3流量削峰
流量削峰也是訊息佇列中的常用場景,一般在秒殺或團搶活動中使用廣泛。
應用場景:秒殺活動,一般會因為流量過大,導致流量暴增,應用掛掉。為解決這個問題,一般需要在應用前端加入訊息佇列。
這樣做有以下好處:
- 可以控制活動的人數;
- 可以緩解短時間內高流量壓垮應用。
伺服器接受使用者的請求後,首先寫入訊息佇列,假如訊息佇列長度超過最大數量,則直接拋棄使用者請求或跳轉到錯誤頁面。秒殺業務根據訊息佇列中的請求資訊,再做後續處理。
2.4日誌處理
日誌處理是指將訊息佇列用在日誌處理中,比如Kafka的應用,解決大量日誌的傳輸問題。架構簡化如下:
- 日誌採集客戶端:負責日誌資料採集,定時寫入Kafka佇列;
- Kafka訊息佇列:負責日誌資料的接收,儲存和轉發;
- 日誌處理應用:訂閱並消費Kafka佇列中的日誌資料。
以下是新浪Kafka日誌處理應用案例:(轉自:http://cloud.51cto.com/art/201507/484338.htm)
(1)Kafka:接受使用者日誌的訊息佇列;
(2)Logstash:做日誌解析,統一成JSON輸出給Elasticsearch;
(3)Elasticsearch:實時日誌分析服務的核心技術,一個schemaless,實時的資料儲存服務,通過index組織資料,兼具強大的搜尋和統計功能;
(4)Kibana:基於Elasticsearch的資料視覺化元件,超強的資料視覺化能力是眾多公司選擇ELK stack的重要原因。
2.5訊息通訊
訊息通訊是指,訊息佇列一般都內建了高效的通訊機制,因此也可以用在純的訊息通訊。比如實現點對點訊息佇列或者聊天室等。
點對點通訊:
客戶端A和客戶端B使用同一佇列,進行訊息通訊。
聊天室通訊:
客戶端A、客戶端B、客戶端N訂閱同一主題,進行訊息釋出和接收,實現類似聊天室效果。
以上實際上是訊息佇列的兩種訊息模式,點對點或釋出訂閱模式。
三、訊息中介軟體示例
3.1電商系統
訊息佇列採用高可用、可持久化的訊息中介軟體。比如ActiveMQ、RabbitMQ、RocketMQ。
(1)應用將主幹邏輯處理完成後,寫入訊息佇列。訊息傳送是否成功可以開啟訊息的確認模式。(訊息佇列返回訊息接收成功狀態後,應用再返回,這樣保障訊息的完整性)
(2)擴充套件流程(傳送簡訊、配送處理)訂閱佇列訊息。採用推或拉的方式獲取訊息並處理。
(3)訊息將應用解耦的同時,帶來了資料一致性問題,可以採用最終一致性方式解決。比如主資料寫入資料庫,擴充套件應用根據訊息佇列,並結合資料庫方式實現基於訊息佇列的後續處理。
3.2日誌收集系統
分為Zookeeper註冊中心、日誌收集客戶端、Kafka叢集和Storm叢集(OtherApp)四部分組成。
- Zookeeper註冊中心:提出負載均衡和地址查詢服務;
- 日誌收集客戶端:用於採集應用系統的日誌,並將資料推送到Kafka佇列;
- Kafka叢集:接收、路由、儲存、轉發等訊息處理。
- Storm叢集:與OtherApp處於同一級別,採用拉的方式消費佇列中的資料。
相關文章
- 訊息佇列系列一:訊息佇列應用佇列
- 訊息佇列佇列
- System V 訊息佇列(一)佇列
- 訊息佇列(MQ)佇列MQ
- Kafka訊息佇列Kafka佇列
- RabbitMQ訊息佇列MQ佇列
- kafka 訊息佇列Kafka佇列
- POSIX訊息佇列佇列
- 訊息佇列(二)佇列
- 訊息佇列二佇列
- [Redis]訊息佇列Redis佇列
- [訊息佇列]rocketMQ佇列MQ
- [訊息佇列]RabbitMQ佇列MQ
- 訊息佇列全面瞭解(一)佇列
- RabbitMQ 訊息佇列之佇列模型MQ佇列模型
- 全面理解Handler-1:理解訊息佇列,手寫訊息佇列佇列
- 如何設計一個訊息佇列?佇列
- MQ訊息佇列_RabbitMQMQ佇列
- Java面試—訊息佇列Java面試佇列
- 訊息佇列雜談佇列
- 訊息佇列二三事佇列
- rabbitmq訊息佇列原理MQ佇列
- 訊息佇列設計佇列
- 訊息佇列簡史佇列
- 訊息佇列之RabbitMQ佇列MQ
- 訊息佇列之RocketMQ佇列MQ
- 理解訊息佇列(MQ)佇列MQ
- 訊息佇列之 RabbitMQ佇列MQ
- 訊息佇列之 Kafka佇列Kafka
- 訊息佇列之 ActiveMQ佇列MQ
- 訊息佇列深入解析佇列
- 訊息佇列之 RocketMQ佇列MQ
- 分散式訊息佇列分散式佇列
- RabbitMQ 訊息佇列 配置MQ佇列
- 淺談訊息佇列佇列
- 程式間通訊--訊息佇列佇列
- 訊息機制篇——初識訊息與訊息佇列佇列
- RabbitMQ訊息佇列(五):Routing 訊息路由MQ佇列路由