Python yield與實現
yield
的功能類似於return
,但是不同之處在於它返回的是生成器
。
生成器
生成器是通過一個或多個yield
表示式構成的函式,每一個生成器都是一個迭代器(但是迭代器不一定是生成器)。
如果一個函式包含yield
關鍵字,這個函式就會變為一個生成器。
生成器並不會一次返回所有結果,而是每次遇到yield
關鍵字後返回相應結果,並保留函式當前的執行狀態,等待下一次的呼叫。
由於生成器也是一個迭代器,那麼它就應該支援next
方法來獲取下一個值。
基本操作
1 2 3 4 5 6 7 |
# 通過`yield`來建立生成器 def func(): for i in xrange(10); yield i # 通過列表來建立生成器 [i for i in xrange(10)] |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
# 呼叫如下 >>> f = func() >>> f # 此時生成器還沒有執行 <generator object func at 0x7fe01a853820> >>> f.next() # 當i=0時,遇到yield關鍵字,直接返回 0 >>> f.next() # 繼續上一次執行的位置,進入下一層迴圈 1 ... >>> f.next() 9 >>> f.next() # 當執行完最後一次迴圈後,結束yield語句,生成StopIteration異常 Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration >>> |
除了next
函式,生成器還支援send
函式。該函式可以向生成器傳遞引數。
1 2 3 4 5 6 7 8 9 10 11 12 13 |
>>> def func(): ... n = 0 ... while 1: ... n = yield n #可以通過send函式向n賦值 ... >>> f = func() >>> f.next() # 預設情況下n為0 0 >>> f.send(1) #n賦值1 1 >>> f.send(2) 2 >>> |
應用
最經典的例子,生成無限序列。
常規的解決方法是,生成一個滿足要求的很大的列表,這個列表需要儲存在記憶體中,很明顯記憶體限制了這個問題。
1 2 3 4 |
def get_primes(start): for element in magical_infinite_range(start): if is_prime(element): return element |
如果使用生成器就不需要返回整個列表,每次都只是返回一個資料,避免了記憶體的限制問題。
1 2 3 4 5 |
def get_primes(number): while True: if is_prime(number): yield number number += 1 |
生成器原始碼分析
生成器的原始碼在Objects/genobject.c
。
呼叫棧
在解釋生成器之前,需要講解一下Python虛擬機器的呼叫原理。
Python虛擬機器有一個棧幀的呼叫棧,其中棧幀的是PyFrameObject
,位於Include/frameobject.h
。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
typedef struct _frame { PyObject_VAR_HEAD struct _frame *f_back; /* previous frame, or NULL */ PyCodeObject *f_code; /* code segment */ PyObject *f_builtins; /* builtin symbol table (PyDictObject) */ PyObject *f_globals; /* global symbol table (PyDictObject) */ PyObject *f_locals; /* local symbol table (any mapping) */ PyObject **f_valuestack; /* points after the last local */ /* Next free slot in f_valuestack. Frame creation sets to f_valuestack. Frame evaluation usually NULLs it, but a frame that yields sets it to the current stack top. */ PyObject **f_stacktop; PyObject *f_trace; /* Trace function */ /* If an exception is raised in this frame, the next three are used to * record the exception info (if any) originally in the thread state. See * comments before set_exc_info() -- it's not obvious. * Invariant: if _type is NULL, then so are _value and _traceback. * Desired invariant: all three are NULL, or all three are non-NULL. That * one isn't currently true, but "should be". */ PyObject *f_exc_type, *f_exc_value, *f_exc_traceback; PyThreadState *f_tstate; int f_lasti; /* Last instruction if called */ /* Call PyFrame_GetLineNumber() instead of reading this field directly. As of 2.3 f_lineno is only valid when tracing is active (i.e. when f_trace is set). At other times we use PyCode_Addr2Line to calculate the line from the current bytecode index. */ int f_lineno; /* Current line number */ int f_iblock; /* index in f_blockstack */ PyTryBlock f_blockstack[CO_MAXBLOCKS]; /* for try and loop blocks */ PyObject *f_localsplus[1]; /* locals+stack, dynamically sized */ } PyFrameObject; |
棧幀儲存了給出程式碼的的資訊和上下文,其中包含最後執行的指令,全域性和區域性名稱空間,異常狀態等資訊。f_valueblock
儲存了資料,b_blockstack
儲存了異常和迴圈控制方法。
舉一個例子來說明,
1 2 3 4 |
def foo(): x = 1 def bar(y): z = y + 2 # |
那麼,相應的呼叫棧如下,一個py檔案,一個類,一個函式都是一個程式碼塊,對應者一個Frame,儲存著上下文環境以及位元組碼指令。
1 2 3 4 5 6 7 8 9 10 |
c --------------------------- a | bar Frame | -> block stack: [] l | (newest) | -> data stack: [1, 2] l --------------------------- | foo Frame | -> block stack: [] s | | -> data stack: [.bar at 0x10d389680>, 1] t --------------------------- a | main (module) Frame | -> block stack: [] c | (oldest) | -> data stack: [] k --------------------------- |
每一個棧幀都擁有自己的資料棧和block棧,獨立的資料棧和block棧使得直譯器可以中斷和恢復棧幀(生成器正式利用這點)。
Python程式碼首先被編譯為位元組碼,再由Python虛擬機器來執行。一般來說,一條Python語句對應著多條位元組碼(由於每條位元組碼對應著一條C語句,而不是一個機器指令,所以不能按照位元組碼的數量來判斷程式碼效能)。
呼叫dis
模組可以分析位元組碼,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
from dis import dis dis(foo) 5 0 LOAD_CONST 1 (1) # 載入常量1 3 STORE_FAST 0 (x) # x賦值為1 6 6 LOAD_CONST 2 (<code>) # 載入常量2 9 MAKE_FUNCTION 0 # 建立函式 12 STORE_FAST 1 (bar) 9 15 LOAD_FAST 1 (bar) 18 LOAD_FAST 0 (x) 21 CALL_FUNCTION 1 # 呼叫函式 24 RETURN_VALUE </code> |
其中,
1 2 3 4 5 |
第一行為程式碼行號; 第二行為偏移地址; 第三行為位元組碼指令; 第四行為指令引數; 第五行為引數解釋。 |
生成器原始碼分析
由了上面對於呼叫棧的理解,就可以很容易的明白生成器的具體實現。
生成器的原始碼位於object/genobject.c
。
生成器的建立
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
PyObject * PyGen_New(PyFrameObject *f) { PyGenObject *gen = PyObject_GC_New(PyGenObject, &PyGen_Type); # 建立生成器物件 if (gen == NULL) { Py_DECREF(f); return NULL; } gen->gi_frame = f; # 賦予程式碼塊 Py_INCREF(f->f_code); # 引用計數+1 gen->gi_code = (PyObject *)(f->f_code); gen->gi_running = 0; # 0表示為執行,也就是生成器的初始狀態 gen->gi_weakreflist = NULL; _PyObject_GC_TRACK(gen); # GC跟蹤 return (PyObject *)gen; } |
send與next
next
與send
函式,如下
1 2 3 4 5 6 7 8 9 10 11 12 |
static PyObject * gen_iternext(PyGenObject *gen) { return gen_send_ex(gen, NULL, 0); } static PyObject * gen_send(PyGenObject *gen, PyObject *arg) { return gen_send_ex(gen, arg, 0); } |
從上面的程式碼中可以看到,send
和next
都是呼叫的同一函式gen_send_ex
,區別在於是否帶有引數。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
static PyObject * gen_send_ex(PyGenObject *gen, PyObject *arg, int exc) { PyThreadState *tstate = PyThreadState_GET(); PyFrameObject *f = gen->gi_frame; PyObject *result; if (gen->gi_running) { # 判斷生成器是否已經執行 PyErr_SetString(PyExc_ValueError, "generator already executing"); return NULL; } if (f==NULL || f->f_stacktop == NULL) { # 如果程式碼塊為空或呼叫棧為空,則丟擲StopIteration異常 /* Only set exception if called from send() */ if (arg && !exc) PyErr_SetNone(PyExc_StopIteration); return NULL; } if (f->f_lasti == -1) { # f_lasti=1 代表首次執行 if (arg && arg != Py_None) { # 首次執行不允許帶有引數 PyErr_SetString(PyExc_TypeError, "can't send non-None value to a " "just-started generator"); return NULL; } } else { /* Push arg onto the frame's value stack */ result = arg ? arg : Py_None; Py_INCREF(result); # 該引數引用計數+1 *(f->f_stacktop++) = result; # 引數壓棧 } /* Generators always return to their most recent caller, not * necessarily their creator. */ f->f_tstate = tstate; Py_XINCREF(tstate->frame); assert(f->f_back == NULL); f->f_back = tstate->frame; gen->gi_running = 1; # 修改生成器執行狀態 result = PyEval_EvalFrameEx(f, exc); # 執行位元組碼 gen->gi_running = 0; # 恢復為未執行狀態 /* Don't keep the reference to f_back any longer than necessary. It * may keep a chain of frames alive or it could create a reference * cycle. */ assert(f->f_back == tstate->frame); Py_CLEAR(f->f_back); /* Clear the borrowed reference to the thread state */ f->f_tstate = NULL; /* If the generator just returned (as opposed to yielding), signal * that the generator is exhausted. */ if (result == Py_None && f->f_stacktop == NULL) { Py_DECREF(result); result = NULL; /* Set exception if not called by gen_iternext() */ if (arg) PyErr_SetNone(PyExc_StopIteration); } if (!result || f->f_stacktop == NULL) { /* generator can't be rerun, so release the frame */ Py_DECREF(f); gen->gi_frame = NULL; } return result; } |
位元組碼的執行
PyEval_EvalFrameEx
函式的功能為執行位元組碼並返回結果。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
# 主要流程如下, for (;;) { switch(opcode) { # opcode為操作碼,對應著各種操作 case NOP: goto fast_next_opcode; ... ... case YIELD_VALUE: # 如果操作碼是yield retval = POP(); f->f_stacktop = stack_pointer; why = WHY_YIELD; goto fast_yield; # 利用goto跳出迴圈 } } fast_yield: ... return vetval; # 返回結果 |
舉一個例子,
f_back
上一個Frame,f_lasti
上一次執行的指令的偏移量,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
import sys from dis import dis def func(): f = sys._getframe(0) print f.f_lasti print f.f_back yield 1 print f.f_lasti print f.f_back yield 2 a = func() dis(func) a.next() a.next() |
結果如下,其中第三行的英文為操作碼,對應著上面的
opcode
,每次switch都是在不同的opcode
之間進行選擇。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
6 0 LOAD_GLOBAL 0 (sys) 3 LOAD_ATTR 1 (_getframe) 6 LOAD_CONST 1 (0) 9 CALL_FUNCTION 1 12 STORE_FAST 0 (f) 7 15 LOAD_FAST 0 (f) 18 LOAD_ATTR 2 (f_lasti) 21 PRINT_ITEM 22 PRINT_NEWLINE 8 23 LOAD_FAST 0 (f) 26 LOAD_ATTR 3 (f_back) 29 PRINT_ITEM 30 PRINT_NEWLINE 9 31 LOAD_CONST 2 (1) 34 YIELD_VALUE # 此時操作碼為YIELD_VALUE,直接跳轉上述goto語句,此時f_lasti為當前指令,f_back為當前frame 35 POP_TOP 11 36 LOAD_FAST 0 (f) 39 LOAD_ATTR 2 (f_lasti) 42 PRINT_ITEM 43 PRINT_NEWLINE 12 44 LOAD_FAST 0 (f) 47 LOAD_ATTR 3 (f_back) 50 PRINT_ITEM 51 PRINT_NEWLINE 13 52 LOAD_CONST 3 (2) 55 YIELD_VALUE 56 POP_TOP 57 LOAD_CONST 0 (None) 60 RETURN_VALUE 18 <frame object at 0x7fa75fcebc20> #和下面的frame相同,屬於同一個frame,也就是說在同一個函式(名稱空間)內,frame是同一個。 39 <frame object at 0x7fa75fcebc20> |