Codeforces 327E Axis Walking (狀壓dp lowbit優化)
E. Axis Walking
time limit per test:3 seconds
memory limit per test:512 megabytes
Iahub has n positive integers a1, a2, ..., an. The sum of those numbers is d. Suppose p1, p2, ..., pn is a permutation of {1, 2, ..., n}. Then, let b1 = ap1, b2 = ap2 and so on. The array b is called a "route". There are n! different routes, one for each permutation p.
Iahub's travel schedule is: he walks b1 steps on Ox axis, then he makes a break in point b1. Then, he walks b2 more steps on Ox axis and makes a break in point b1 + b2. Similarly, at j-th (1 ≤ j ≤ n) time he walks bj more steps on Ox axis and makes a break in point b1 + b2 + ... + bj.
Iahub is very superstitious and has k integers which give him bad luck. He calls a route "good" if he never makes a break in a point corresponding to one of those k numbers. For his own curiosity, answer how many good routes he can make, modulo 1000000007 (109 + 7).
Input
The first line contains an integer n (1 ≤ n ≤ 24). The following line contains n integers: a1, a2, ..., an (1 ≤ ai ≤ 109).The third line contains integer k (0 ≤ k ≤ 2). The fourth line contains k positive integers, representing the numbers that give Iahub bad luck. Each of these numbers does not exceed 109.
Output
Output a single integer — the answer of Iahub's dilemma modulo 1000000007 (109 + 7).Sample test(s)
Input
32 3 5
2
5 7
Output
1
Input
3
2 2 2
2
1 3
Output
6
Note
In the first case consider six possible orderings:
[2, 3, 5]. Iahub will stop at position 2, 5 and 10. Among them, 5 is bad luck for him.
[2, 5, 3]. Iahub will stop at position 2, 7 and 10. Among them, 7 is bad luck for him.
[3, 2, 5]. He will stop at the unlucky 5.
[3, 5, 2]. This is a valid ordering.
[5, 2, 3]. He got unlucky twice (5 and 7).
[5, 3, 2]. Iahub would reject, as it sends him to position 5.
In the second case, note that it is possible that two different ways have the identical set of stopping. In fact, all six possible ways have the same stops: [2, 4, 6], so there's no bad luck for Iahub.
題目連結:http://codeforces.com/contest/327/problem/E
題目大意:給一個序列,可以任意重排,但是字首和不能出現給定數字中的數,問有幾種排列方式
題目分析:n小於等於24,畢竟是cf,跑的快,狀壓搞一下,sum陣列記錄狀態,即有哪些數字被選了(1表示被選),這樣就可以簡單的列舉全排列的狀態了,用dp記下數,注意這裡還需要用lowbit優化來降低複雜度
#include <cstdio>
#include <cstring>
#include <algorithm>
#define lowbit(x) (x & (-x))
#define ll long long
using namespace std;
int const MOD = 1e9 + 7;
int const MAX = (1 << 24) + 1;
ll sum[MAX], dp[MAX];
int a[MAX], no[2];
int main()
{
int n, k;
scanf("%d", &n);
for(int i = 0; i < n; i++)
{
scanf("%d", &a[i]);
sum[1 << i] = a[i];
}
scanf("%d", &k);
for(int i = 0; i < k; i++)
scanf("%d", &no[i]);
dp[0] = 1;
for(int i = 1; i < (1 << n); i++)
{
sum[i] = sum[i & ~lowbit(i)] + sum[lowbit(i)];
if(sum[i] == no[0] || sum[i] == no[1])
continue;
for(int j = i; j != 0; j -= lowbit(j))
{
dp[i] += dp[i & ~lowbit(j)];
if(dp[i] > MOD)
dp[i] -= MOD;
}
}
printf("%I64d\n", dp[(1 << n) - 1]);
}
相關文章
- Codeforces Round #321 (Div. 2) D 狀壓dp
- 狀壓 dp
- 狀壓DP
- Codeforces 11D A Simple Task 題解 [ 藍 ] [ 狀壓 dp ]
- Codeforces 909C Python Indentation:樹狀陣列優化dpPython陣列優化
- Codeforces 895C Square Subsets:狀壓dp【組合數結論】
- 狀壓DP基礎入門
- Codeforces 453B Little Pony and Harmony Chest:狀壓dp【記錄轉移路徑】
- 合理安排(狀壓dp,包括技巧)
- E - Remove Pairs(狀壓dp+博弈論)REMAI
- Uva-1633 Dyslexic Gollum(狀壓DP)Go
- HDU 5067 Harry And Dig Machine(狀壓dp)Mac
- Codeforces 479E Riding in a Lift:字首和/差分優化dp優化
- 【DP】斜率優化初步優化
- 演算法學習之路|狀態壓縮dp演算法
- bzoj 3812: 主旋律 [容斥原理 狀壓DP]
- ZOJ 3802 Easy 2048 Again(狀壓dp)AI
- Lightoj 1021 Painful Bases (狀壓dp 有趣)AI
- 分組(狀壓dp+技巧:快速列舉子集)
- Luogu P1777 幫助 題解 [ 紫 ] [ 線性 dp ] [ 狀壓 dp ]
- 斜率優化DP總結優化
- NOIP2005過河[DP 狀態壓縮]
- POJ 3254 Corn Fields:網格密鋪類 狀壓dp
- 斜率優化(凸包優化)DP問題acm優化ACM
- CodeForces 233B. Non-square Equation【狀壓】
- POJ 2411 Mondriaan's Dream:網格密鋪類 狀壓dp
- URAL 1152 False Mirrors(簡單的狀態壓縮dp)False
- CF79D Password (差分+狀壓 dp+最短路/bfs)
- 一類哈密頓路徑/迴路為背景的狀壓dp
- walking in the airAI
- codeforces 148 D 概率dp
- codeforces455A Boredom (裸DP)
- HDU 5135 Little Zu Chongzhi's Triangles(狀壓dp或者貪心)
- HDU 1992Tiling a Grid With Dominoes(狀壓dp)
- UVA 11825 dp、狀態壓縮、二進位制法表示集合
- 【dp+離散化+線段樹優化】Paint優化AI
- lowbit 與 highbit
- 四邊形不等式優化DP優化