面試必問:HashMap 底層實現原理分析

Java丨晨發表於2019-04-26

前言

HashMap是在面試中經常會問的一點,很多時候我們僅僅只是知道HashMap他是允許鍵值對都是Null,並且是非執行緒安全的,如果在多執行緒的環境下使用,是很容易出現問題的。 這是我們通常在面試中會說的,但是有時候問到底層的原始碼分析的時候,為什麼允許為Null,為什麼不安全,這些問題的時候,如果沒有分析過原始碼的話,好像很難回答, 這樣的話我們來研究一下這個原始碼。看看原因吧。

HashMap最早出現在JDK1.2中,它的底層是基於的雜湊演算法。允許鍵值對都是Null,並且是非執行緒安全的,我們先看看這個1.8版本的JDK中HashMap的資料結構吧。

HashMap圖解如下

面試必問:HashMap 底層實現原理分析

我們都知道HashMap是陣列+連結串列組成的,bucket陣列是HashMap的主體,而連結串列是為了解決雜湊衝突而存在的,但是很多人不知道其實HashMap是包含樹結構的,但是得有一點 注意事項,什麼時候會出現紅黑樹這種紅樹結構的呢?我們就得看原始碼了,原始碼解釋說預設連結串列長度大於8的時候會轉換為樹。我們看看原始碼說的

原始碼分析

結構

/**
 * Basic hash bin node, used for most entries.  (See below for
 * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
 */
 /**
    Node是hash基礎的節點,是單向連結串列,實現了Map.Entry介面
 */
static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    V value;
    Node<K,V> next;
    //建構函式
    Node(int hash, K key, V value, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }
  public final K getKey()        { return key; }
  public final V getValue()      { return value; }
  public final String toString() { return key + "=" + value; }

  public final int hashCode() {
              return Objects.hashCode(key) ^ Objects.hashCode(value);
   }

  public final V setValue(V newValue) {
              V oldValue = value;
              value = newValue;
              return oldValue;
  }
  public final boolean equals(Object o) {
      if (o == this)
          return true;
      if (o instanceof Map.Entry) {
          Map.Entry<?,?> e = (Map.Entry<?,?>)o;
          if (Objects.equals(key, e.getKey()) &&
              Objects.equals(value, e.getValue()))
              return true;
      }
      return false;
  }
}
複製程式碼

接下來就是樹結構了

TreeNode 是紅黑樹的資料結構。

  /**
     * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
     * extends Node) so can be used as extension of either regular or
     * linked node.
     */
    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
        TreeNode(int hash, K key, V val, Node<K,V> next) {
            super(hash, key, val, next);
        }
     /**
      * Returns root of tree containing this node.
      */
     final TreeNode<K,V> root() {
         for (TreeNode<K,V> r = this, p;;) {
             if ((p = r.parent) == null)
                 return r;
             r = p;
         }
     }
複製程式碼

我們在看一下類的定義

public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable {
複製程式碼

繼承了抽象的map,實現了Map介面,並且進行了序列化。

在類裡還有基礎的變數

變數

/**
 * The default initial capacity - MUST be a power of two.
 *  預設初始容量 16 - 必須是2的冪
 */
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

/**
 * The maximum capacity, used if a higher value is implicitly specified
 * by either of the constructors with arguments.
 * MUST be a power of two <= 1<<30.
 * 最大容量 2的30次方
 */
static final int MAXIMUM_CAPACITY = 1 << 30;

/**
 * The load factor used when none specified in constructor.
 * 預設載入因子,用來計算threshold
 */
 static final float DEFAULT_LOAD_FACTOR = 0.75f;

/**
 * The bin count threshold for using a tree rather than list for a
 * bin.  Bins are converted to trees when adding an element to a
 * bin with at least this many nodes. The value must be greater
 * than 2 and should be at least 8 to mesh with assumptions in
 * tree removal about conversion back to plain bins upon
 * shrinkage.
 * 連結串列轉成樹的閾值,當桶中連結串列長度大於8時轉成樹 
 * threshold = capacity * loadFactor
 */
static final int TREEIFY_THRESHOLD = 8;

/**
 * The bin count threshold for untreeifying a (split) bin during a
 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
 * most 6 to mesh with shrinkage detection under removal.
 * 進行resize操作時,若桶中數量少於6則從樹轉成連結串列
 */
static final int UNTREEIFY_THRESHOLD = 6;

/**
 * The smallest table capacity for which bins may be treeified.
 * (Otherwise the table is resized if too many nodes in a bin.)
 * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
 * between resizing and treeification thresholds.
 * 桶中結構轉化為紅黑樹對應的table的最小大小
 * 當需要將解決 hash 衝突的連結串列轉變為紅黑樹時,
 * 需要判斷下此時陣列容量,
 * 若是由於陣列容量太小(小於 MIN_TREEIFY_CAPACITY )
 * 導致的 hash 衝突太多,則不進行連結串列轉變為紅黑樹操作,
 * 轉為利用 resize() 函式對 hashMap 擴容
 */
static final int MIN_TREEIFY_CAPACITY = 64;

/**
 * The table, initialized on first use, and resized as
 * necessary. When allocated, length is always a power of two.
 * (We also tolerate length zero in some operations to allow
 * bootstrapping mechanics that are currently not needed.)
 * 儲存Node<K,V>節點的陣列
 * 該表在首次使用時初始化,並根據需要調整大小。 分配時,
 * 長度始終是2的冪。
 */
transient Node<K,V>[] table;

/**
 * Holds cached entrySet(). Note that AbstractMap fields are used
 * for keySet() and values().
 * 存放具體元素的集
 */
transient Set<Map.Entry<K,V>> entrySet;

/**
 * The number of key-value mappings contained in this map.
 * 記錄 hashMap 當前儲存的元素的數量
 */
transient int size;

/**
 * The number of times this HashMap has been structurally modified
 * Structural modifications are those that change the number of mappings in
 * the HashMap or otherwise modify its internal structure (e.g.,
 * rehash).  This field is used to make iterators on Collection-views of
 * the HashMap fail-fast.  (See ConcurrentModificationException).
 * 每次更改map結構的計數器
 */
transient int modCount;

/**
 * The next size value at which to resize (capacity * load factor).
 * 臨界值 當實際大小(容量*填充因子)超過臨界值時,會進行擴容
 * @serial
 */
// (The javadoc description is true upon serialization.
// Additionally, if the table array has not been allocated, this
// field holds the initial array capacity, or zero signifying
// DEFAULT_INITIAL_CAPACITY.)
int threshold;

/**
 * The load factor for the hash table.
 * 負載因子:要調整大小的下一個大小值(容量*載入因子)。
 * @serial
 */
final float loadFactor;
複製程式碼

我們再看看構造方法

構造方法

/**
 * Constructs an empty <tt>HashMap</tt> with the specified initial
 * capacity and the default load factor (0.75).
 *
 * @param  initialCapacity the initial capacity.
 * @throws IllegalArgumentException if the initial capacity is negative.
 * 傳入初始容量大小,使用預設負載因子值 來初始化HashMap物件
 */
public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

/**
 * Constructs an empty <tt>HashMap</tt> with the default initial capacity
 * (16) and the default load factor (0.75).
 * 預設容量和負載因子
 */
public HashMap() {
    this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}

/**
 * Constructs an empty <tt>HashMap</tt> with the specified initial
 * capacity and load factor.
 *
 * @param  initialCapacity the initial capacity
 * @param  loadFactor      the load factor
 * @throws IllegalArgumentException if the initial capacity is negative
 *         or the load factor is nonpositive
 * 傳入初始容量大小和負載因子 來初始化HashMap物件
 */
public HashMap(int initialCapacity, float loadFactor) {
     // 初始容量不能小於0,否則報錯
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    // 初始容量不能大於最大值,否則為最大值    
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    //負載因子不能小於或等於0,不能為非數字
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);
    // 初始化負載因子
    this.loadFactor = loadFactor;
    // 初始化threshold大小
    this.threshold = tableSizeFor(initialCapacity);
}

/**
 * Returns a power of two size for the given target capacity.
 * 找到大於或等於 cap 的最小2的整數次冪的數
 */
static final int tableSizeFor(int cap) {
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
複製程式碼

在這原始碼中,loadFactor負載因子是一個非常重要的引數,因為他能夠反映HashMap桶陣列的使用情況, 這樣的話,HashMap的時間複雜度就會出現不同的改變。

當這個負載因子屬於低負載因子的時候,HashMap所能夠容納的鍵值對數量就是偏少的,擴容後,重新將鍵值對 儲存在桶陣列中,鍵與鍵之間產生的碰撞會下降,連結串列的長度也會隨之變短。

但是如果增加負載因子當這個負載因子大於1的時候,HashMap所能夠容納的鍵值對就會變多,這樣碰撞就會增加, 這樣的話連結串列的長度也會增加,一般情況下負載因子我們都不會去修改。都是預設的0.75。

擴容機制

resize()這個方法就是重新計算容量的一個方法,我們看看原始碼:

/**
 * Initializes or doubles table size.  If null, allocates in
 * accord with initial capacity target held in field threshold.
 * Otherwise, because we are using power-of-two expansion, the
 * elements from each bin must either stay at same index, or move
 * with a power of two offset in the new table.
 *
 * @return the table
 */
final Node<K,V>[] resize() {
    //引用擴容前的Entry陣列
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {

        // 擴容前的陣列大小如果已經達到最大(2^30)了
        //在這裡去判斷是否達到最大的大小 
        if (oldCap >= MAXIMUM_CAPACITY) {
               //修改閾值為int的最大值(2^31-1),這樣以後就不會擴容了
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }

        // 如果擴容後小於最大值 而且 舊陣列桶大於初始容量16, 閾值左移1(擴大2倍)
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    // 如果陣列桶容量<=0 且 舊閾值 >0
    else if (oldThr > 0) // initial capacity was placed in threshold
        //新的容量就等於舊的閥值
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
         // 如果陣列桶容量<=0 且 舊閾值 <=0
         // 新容量=預設容量
         // 新閾值= 負載因子*預設容量
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    // 如果新閾值為0
    if (newThr == 0) {
        // 重新計算閾值
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    //在這裡就會 更新閾值
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
     //建立新的陣列
     Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];

    // 覆蓋陣列桶
    table = newTab;
     // 如果舊陣列桶不是空,則遍歷桶陣列,並將鍵值對對映到新的桶陣列中
    //在這裡還有一點詭異的,1.7是不存在後邊紅黑樹的,但是1.8就是有紅黑樹
    if (oldTab != null) {
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;

                // 如果是紅黑樹
                else if (e instanceof TreeNode)

                    // 重新對映時,然後對紅黑樹進行拆分
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    // 如果不是紅黑樹,那也就是說他連結串列長度沒有超過8,那麼還是連結串列,
                    //那麼還是會按照連結串列處理
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;

                    // 遍歷連結串列,並將連結串列節點按原順序進行分組
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 將分組後的連結串列對映到新桶中
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}
複製程式碼

所以說在經過resize這個方法之後,元素的位置要麼就是在原來的位置,要麼就是在原來的位置移動2次冪的位置上。 原始碼上的註釋也是可以翻譯出來的

/**
     * Initializes or doubles table size.  If null, allocates in
     * accord with initial capacity target held in field threshold.
     * Otherwise, because we are using power-of-two expansion, the
     * elements from each bin must either stay at same index, or move
     * with a power of two offset in the new table.
     *
     * @return the table

     如果為null,則分配符合欄位閾值中儲存的初始容量目標。 
     否則,因為我們使用的是2次冪擴充套件,
     所以每個bin中的元素必須保持相同的索引,或者在新表中以2的偏移量移動。

     */
    final Node<K,V>[] resize() .....
複製程式碼

所以說他的擴容其實很有意思,就有了三種不同的擴容方式了,

在HashMap剛初始化的時候,使用預設的構造初始化,會返回一個空的table,並且 thershold為0,因此第一次擴容的時候預設值就會是16. 同時再去計算thershold = DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY = 16*0.75 = 12.

如果說指定初始容量的初始HashMap的時候,那麼這時候計算這個threshold的時候就變成了 threshold = DEFAULT_LOAD_FACTOR * threshold(當前的容量)

如果HashMap不是第一次擴容,已經擴容過了,那麼每次table的容量

threshold也會變成原來的2倍。

之前看1.7的原始碼的時候,是沒有這個紅黑樹的,而是在1.8 之後做了相應的優化。 使用的是2次冪的擴充套件(指長度擴為原來2倍)。 而且在擴充HashMap的時候,不需要像JDK1.7的實現那樣重新計算hash,這樣子他就剩下了計算hash的時間了

最後

歡迎大家關注和點贊,以後會不斷更新更多精選乾貨文章分享!

讀者福利

在這給大家推薦一個微信公眾號,那裡每天都會有技術乾貨、技術動向、職業生涯、行業熱點、職場趣事等一切有關於程式設計師的內容分享。更有海量Java架構、移動網際網路架構相關原始碼視訊,面試資料,電子書籍免費發放。我看了覺得資源還不錯,如果你們有需要的話,掃描下方二維碼關注wx公眾號免費獲取↓↓↓

面試必問:HashMap 底層實現原理分析

部分資料如下:

面試必問:HashMap 底層實現原理分析

面試必問:HashMap 底層實現原理分析

面試必問:HashMap 底層實現原理分析



相關文章