歡迎大家前往騰訊雲社群,獲取更多騰訊海量技術實踐乾貨哦~
作者:汪毅雄
導語: 本文講述的是Android的訊息機制原理,從Java到Native程式碼進行了梳理,並結合其中使用到的Epoll模型予以介紹。
Android的訊息傳遞,是系統的核心功能,對於如何使用相信大家都已經相當熟悉了,這裡簡單提一句。我們可以粗糙的認為訊息機制中關鍵的幾個類的功能如下:
Handler:訊息處理者
Looper:訊息排程者
MessageQueue:存放訊息的地方
使用過程:
Looper.prepare > #$%^^& > Looper.loop(死迴圈) --- loop到一個訊息 > Handler處理
好了,我們直接看原始碼吧。
Java層
訊息機制是伴隨執行緒的,也就是說上面的幾個類在可以在任何一個執行緒中都有例項的。
先看Looper吧。以主執行緒為例,Android程式在初始化,會呼叫prepareMainLooper
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
...
sMainLooper = myLooper();
}
}複製程式碼
private static void prepare(boolean quitAllowed) {
...
sThreadLocal.set(new Looper(quitAllowed));
}複製程式碼
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}複製程式碼
以上幾個方法就是Looper初始化,如果是主執行緒Looper會建立一個不可退出的MessageQueue,並把looper例項放入執行緒獨立(ThreadLocal)變數中。
Looper#loop
public static void loop() {
final Looper me = myLooper();
final MessageQueue queue = me.mQueue;
for (;;) {
Message msg = queue.next();
if (msg == null) {
return;
}
...
try {
msg.target.dispatchMessage(msg);
}
...
msg.recycleUnchecked();
}
}複製程式碼
Looper prepare後就可以loop了,loop非常簡單,一直去queue中拿訊息就好了,拿到了交給target也就是Handler處理。大家有可能會奇怪這種死迴圈,執行起來不會太sb粗暴了嗎?其實這個解決方式在queue.next!!!後面再講。
Handler#dispatchMessage
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}複製程式碼
handler收到後,如果發現message的callback不為空,則只處理callback。(提一句,我們用的很多的handler.post(Runnable),其實這個Runnable就是這裡的callback,也就是說post的Runnable實質上是一個優先順序很高的Message),如果沒有則嘗試交給handler本身的callback處理(handler初始化的時候可以用callback方式構造),再沒有才到我們常用的handleMessage方法,這裡就是我們經常重寫的方法。
再說說訊息的傳送,一般handler會呼叫sendMessage方法,但是最終這個方法還是會跑到這裡
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}複製程式碼
再交給MessageQueue
boolean enqueueMessage(Message msg, long when) {
。。。
synchronized (this) {
。。。
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
。。。
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
if (needWake){
nativeWake(mPtr);
}
}
return true;
}複製程式碼
MessageQueue會把訊息插入佇列,並依次改變佇列中各個訊息的指標。
咦,好像只用Java層貌似就能把整個訊息機制說通了,native程式碼在哪兒?有何用呢?
但是,剛才提到了Looper初始化的時候也會新建一個MessageQueue
MessageQueue(boolean quitAllowed) {
mQuitAllowed = quitAllowed;
mPtr = nativeInit();
}複製程式碼
好了,我們第一個native方法出來了。這時候我們可以猜得到,MessageQueue才是整個訊息機制的核心!
Native層
接上面Java層的程式碼,MessageQueue構造的時候會調一個nativeInit。
static jlong android_os_MessageQueue_nativeInit(JNIEnv* env, jclass clazz) {
NativeMessageQueue* nativeMessageQueue = new NativeMessageQueue();
。。。
}複製程式碼
NativeMessageQueue::NativeMessageQueue() :
mPollEnv(NULL), mPollObj(NULL), mExceptionObj(NULL) {
mLooper = Looper::getForThread();
if (mLooper == NULL) {
mLooper = new Looper(false);
Looper::setForThread(mLooper);
}
}複製程式碼
native層呼叫init方法後,會在native層構建一個native Looper!來看看native Looper的初始化
Looper::Looper(bool allowNonCallbacks) :
mAllowNonCallbacks(allowNonCallbacks), mSendingMessage(false),
mPolling(false), mEpollFd(-1), mEpollRebuildRequired(false),
mNextRequestSeq(0), mResponseIndex(0), mNextMessageUptime(LLONG_MAX) {
mWakeEventFd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
...
rebuildEpollLocked();
}複製程式碼
這裡建立了一個eventfd,程式碼來自最新的8.0,這部分和5.0 pipe管道的mWakeReadPipeFd和mWakeWritePipeFd稍微有點不一樣,前者是等待/響應,後者是讀取/寫入。只是android選取方式的不同而已,這塊就不細說。
void Looper::rebuildEpollLocked() {
。。。
mEpollFd = epoll_create(EPOLL_SIZE_HINT);
LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance: %s", strerror(errno));
struct epoll_event eventItem;
memset(& eventItem, 0, sizeof(epoll_event));
eventItem.events = EPOLLIN;
eventItem.data.fd = mWakeEventFd;
int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeEventFd, & eventItem);
。。。
}複製程式碼
再到rebuildEpollLocked這個方法中,可以看到通過epoll_create建立了一個epoll專用的檔案描述符,EPOLL_SIZE_HINT表示mEpollFd上能監控的最大檔案描述符數。最後呼叫epoll_ctl監控mWakeEventFd檔案描述符的Epoll事件,即當mWakeEventFd中有內容可讀時,就喚醒當前正在等待的執行緒.。
這裡不瞭解的人可能聽著暈,上面這麼一大段一句話概括就是:Android native層用了Epoll模型。什麼是Epoll模型呢?我先簡單介紹一下。
Epoll(必看!!!)
為什麼要引入呢?
在Looper.loop的時候提到了,android不會簡單粗暴地真的執行啥都沒幹的死迴圈。剛才說了,問題出在queue.next。Epoll乾的事就是: 如果你的queue中沒有訊息可執行了,好了你可以歇著了,等有訊息的我再告訴你。這個queue.next就是“阻塞”(休眠)在這裡。
Epoll簡單介紹
1、傳統的阻塞型I/O(一邊寫,一邊讀),一個執行緒只能處理一個一個IO流。
2、如果一個執行緒想要處理多個流,可以採用了非阻塞、輪詢I/O方式,但是傳統的非阻塞處理多個流的時候,會遍歷所有流,但是如果所有流都沒資料,就會白白浪費CPU。
。。。
於是出現了select和epoll兩種常見的代理方式。
3、select就是那種無差別輪詢的代理方式。epoll可以理解為Event poll,也就是說代理者會代理流的時候也伴隨著事件,因此有了對應事件,就可以避免無差別輪詢了。
4、其通常的操作有:epoll_create(建立一個epoll)、epoll_ctl(往epoll中增加/刪除某一個流的某一個事件)、epoll_wait(在一定時間內等待事件的發生)
eventItem.events = EPOLLIN;
eventItem.data.fd = mWakeEventFd;
int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeEventFd, & eventItem);複製程式碼
好了,我們結合Looper初始化的程式碼來讀一下epoll在這裡幹了什麼吧。
我直接翻譯了:往mEpollFd代理中、註冊、一個叫mWakeEventFd流、的資料流入事件(EPOLLIN)
這樣大家應該懂了吧。。。
接上MessageQueue在初始化後,在native建立了一個Looper。
我們繼續訊息的傳送和提取在native層的表現。其實native層主要負責的是訊息的排程,比如說何時阻塞、何時喚醒執行緒,避免CPU浪費。
native傳送
傳送在native比較簡單,handler傳送訊息後,會到MessageQueue的enqueueMessage,此時線上程阻塞的情況下,會呼叫nativeWake來喚起執行緒。
void NativeMessageQueue::wake() {
mLooper->wake();
}複製程式碼
void Looper::wake() {
。。。
uint64_t inc = 1;
ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd, &inc, sizeof(uint64_t)));
if (nWrite != sizeof(uint64_t)) {
。。。。
}
}複製程式碼
這裡TEMP_FAILURE_RETRY是一個巨集定義,顧名思義,就是不斷地嘗試往mWakeEventFd流裡面寫一個無用資料直到成功,以此來喚醒queue.next。這部分就不多說了。
native訊息提取
也就是queue.next
Message next() {
。。。
for (;;) {
。。。
nativePollOnce(ptr, nextPollTimeoutMillis);
。。。
}
}複製程式碼
可以看到,又是一個死迴圈(阻塞)。繼續往下看
void NativeMessageQueue::pollOnce(JNIEnv* env, jobject pollObj, int timeoutMillis) {
。。。
mLooper->pollOnce(timeoutMillis);
。。。
}複製程式碼
mLooper->pollOnce
mLooper->pollInner
int Looper::pollInner(int timeoutMillis) {
。。。
int result = POLL_WAKE;
mPolling = true;
struct epoll_event eventItems[EPOLL_MAX_EVENTS];
int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);
mPolling = false;
mLock.lock();
for (int i = 0; i < eventCount; i++) {
int fd = eventItems[i].data.fd;
uint32_t epollEvents = eventItems[i].events;
if (fd == mWakeEventFd) {
if (epollEvents & EPOLLIN) {
awoken();
} else {
ALOGW("Ignoring unexpected epoll events 0x%x on wake event fd.", epollEvents);
}
}
。。。
}
。。。
mLock.unlock();
。。。
return result;
}複製程式碼
在這裡,我們注意到epoll_wait方法,這裡會得到一段時間內(結合訊息計算得來的)收到的事件個數,這裡對於queue來說就是空閒(阻塞)狀態。過了這個時間後,看看事件數,如果為0,則意味著超時。否則,遍歷所有的事件,看看有沒有mWakeEventFd,且是EPOLLIN事件的,有的話就真正喚醒執行緒、解除空閒狀態。
訊息機制在native層的主要表現就是這些。
最後,畫了一個粗糙、且不太準確圖僅供參考學習
相關閱讀
此文已由作者授權騰訊雲技術社群釋出,轉載請註明原文出處