每日導數94

会飞的鱼13發表於2024-03-25

經典找點問題,如果利用保號性是顯然的

已知函式\(f(x)=(m+1-x)e^x-\dfrac{1}{2}me^{2x}-2\)

(1)當\(m=2\),討論\(f(x)\)的單調性

(2)若\(x=0\),是\(f(x)\)的極小值點,求\(m\)的取值範圍

(1)\(m=2,f(x)=(3-x)e^x-e^{2x}-2\)\(f^{\prime}(x)=e^{x}(2-x)-2e^{2x}=e^x(2-x-2e^x)\)

\(2-x-2e^x\)單調遞減,並且\(f^{\prime}(0)=0\)
\(f(x)\)\((-\infty,0)\)上增,\([0,+\infty)\)上減

(2)
\(f^{\prime}(x)=e^x(m-x)-me^{2x}=e^x(m-x-me^x)\)

\(\varphi(x)=m-x-me^x,\varphi(0)=0\)

\(\varphi^{\prime}(x)=-1-me^x,\varphi^{\prime}(0)=-1-m,\varphi^{\prime}\left(\ln-\dfrac{1}{m}\right)=-1-m\cdot\left(-\dfrac{1}{m}\right)=0\)

Case1 當\(m=-1\)時,\(f^{\prime}(x)=e^x(-1-x+e^x)\geq 0\)

此時沒有極值點,舍

Case2 當\(m<-1\)\(\ln-\dfrac{1}{m}<0\),此時\(\varphi^{\prime}(x)\)單調遞增,

\(\varphi^{\prime}(x)\)\(\left(-\infty,\ln-\dfrac{1}{m}\right)\)上為負,\(\left(\ln-\dfrac{1}{m},+\infty\right)\)上為正

\(\varphi(x)\)\(\left(-\infty,\ln-\dfrac{1}{m}\right)\)上為減,\(\left(\ln-\dfrac{1}{m},+\infty\right)\)上增

\(\varphi\left(\ln-\dfrac{1}{m}\right)=m-\ln-\dfrac{1}{m}+1<m+1-\left(1-\dfrac{1}{-\dfrac{1}{m}}\right)=0\)

\(\varphi(0)=0\),則在\(\left(\ln-\dfrac{1}{m},0\right)\)上負,\((0,+\infty)\)上增

\(x=0\)\(f(x)\)的極小值點,合題

Case3 當\(-1<m<0\)時,\(\varphi^{\prime}(0)=-1-m<0\),此時\(\varphi^{\prime}(x)\)單調遞增

此時\(\ln-\dfrac{1}{m}>0\),同Case3,

\(\varphi^{\prime}(x)\)\(\left(-\infty,\ln-\dfrac{1}{m}\right)\)上為負,\(\left(\ln-\dfrac{1}{m},+\infty\right)\)上為正

\(\varphi(x)\)\(\left(-\infty,\ln-\dfrac{1}{m}\right)\)上為減,\(\left(\ln-\dfrac{1}{m},+\infty\right)\)上增

從而\(\varphi(x)\)\(\left(0,\ln-\dfrac{1}{m}\right)\)減,因\(\varphi(0)=0\)

則此時\(x=0\)\(f(x)\)的極大值點,舍

Case4 當\(m>0\)時,\(\varphi^{\prime}(x)<0\),則\(\varphi(x)\)單調遞減

此時\(x=0\)\(f(x)\)的極大值點,舍

綜上\(m<-1\)

相關文章