作者:chen_h
微訊號 & QQ:862251340
微信公眾號:coderpai
我的部落格:請點選這裡
這篇教程是翻譯Peter Roelants寫的神經網路教程,作者已經授權翻譯,這是原文。
該教程將介紹如何入門神經網路,一共包含五部分。你可以在以下連結找到完整內容。
多層網路的推廣
這部分教程將介紹兩部分:
多層網路的泛化
隨機梯度下降的最小批處理分析
在這個教程中,我們把前饋神經網路推到任意數量的隱藏層。其中的概念我們都通過矩陣乘法和非線性變換來進行系統的說明。我們通過構建一個由兩層隱藏層組成的小型網路去識別手寫數字識別,來說明神經網路向多層神經網路的泛化能力。這個神經網路將是通過隨機梯度下降演算法進行訓練。
我們先匯入教程需要使用的軟體包。
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets, cross_validation, metrics
from matplotlib.colors import colorConverter, ListedColormap
import itertools
import collections複製程式碼
手寫數字集
在這個教程中,我們使用scikit-learn提供的手寫數字集。這個手寫數字集包含1797張8*8的圖片。在處理中,我們可以把畫素鋪平,形成一個64維的向量。下圖展示了每個數字的圖片。注意,這個資料集和MNIST手寫數字集是不一樣,MNIST是一個大型的資料集,而這個只是一個小型的資料集。
我們會先對這個資料集進行一個預處理,將這個資料集切分成以下幾部分:
一個訓練集,用於模型的訓練。(輸入資料:X_train,目標資料:T_train)
一個驗證的資料集,用於去評估模型的效能,如果模型在訓練資料集上面出現過擬合了,那麼可以終止訓練了。(輸入資料:X_validation,目標資料:T_avlidation)
一個測試資料集,用於最終對模型的測試。(輸入資料:X_test,目標資料:T_test)
# load the data from scikit-learn.
digits = datasets.load_digits()
# Load the targets.
# Note that the targets are stored as digits, these need to be
# converted to one-hot-encoding for the output sofmax layer.
T = np.zeros((digits.target.shape[0],10))
T[np.arange(len(T)), digits.target] += 1
# Divide the data into a train and test set.
X_train, X_test, T_train, T_test = cross_validation.train_test_split(
digits.data, T, test_size=0.4)
# Divide the test set into a validation set and final test set.
X_validation, X_test, T_validation, T_test = cross_validation.train_test_split(
X_test, T_test, test_size=0.5)複製程式碼
# Plot an example of each image.
fig = plt.figure(figsize=(10, 1), dpi=100)
for i in range(10):
ax = fig.add_subplot(1,10,i+1)
ax.matshow(digits.images[i], cmap='binary')
ax.axis('off')
plt.show()複製程式碼
網路層的泛化
在第四部分中,我們設計的神經網路通過矩陣相乘實現一個線性轉換和一個非線性函式的轉換。
在進行非線性函式處理時,我們是對每個神經元進行處理的,這樣的好處是可以幫助我們更加容易的進行理解和計算。
我們利用Python classes構造了三個層:
一個線性轉換層
LinearLayer
一個Logistic函式
LogisticLayer
一個softmax函式層
SoftmaxOutputLayer
在正向傳遞時,每個層可以通過get_output
函式計算該層的輸出結果,這個結果將被下一層作為輸入資料進行使用。在反向傳遞時,每一層的輸入的梯度可以通過get_input_grad
函式計算得到。如果是最後一層,那麼梯度計算方程將利用目標結果進行計算。如果是中間的某一層,那麼梯度就是梯度計算函式的輸出結果。如果每個層有迭代引數的話,那麼可以在get_params_iter
函式中實現,並且在get_params_grad
函式中按照原來的順序實現引數的梯度。
注意,在softmax層中,梯度和損失函式的計算將根據輸入樣本的數量進行計算。也就是說,這將使得梯度與損失函式和樣本數量之間是相互獨立的,以至於當我們改變批處理的數量時,對別的引數不會產生影響。
# Define the non-linear functions used
def logistic(z):
return 1 / (1 + np.exp(-z))
def logistic_deriv(y): # Derivative of logistic function
return np.multiply(y, (1 - y))
def softmax(z):
return np.exp(z) / np.sum(np.exp(z), axis=1, keepdims=True)複製程式碼
# Define the layers used in this model
class Layer(object):
"""Base class for the different layers.
Defines base methods and documentation of methods."""
def get_params_iter(self):
"""Return an iterator over the parameters (if any).
The iterator has the same order as get_params_grad.
The elements returned by the iterator are editable in-place."""
return []
def get_params_grad(self, X, output_grad):
"""Return a list of gradients over the parameters.
The list has the same order as the get_params_iter iterator.
X is the input.
output_grad is the gradient at the output of this layer.
"""
return []
def get_output(self, X):
"""Perform the forward step linear transformation.
X is the input."""
pass
def get_input_grad(self, Y, output_grad=None, T=None):
"""Return the gradient at the inputs of this layer.
Y is the pre-computed output of this layer (not needed in this case).
output_grad is the gradient at the output of this layer
(gradient at input of next layer).
Output layer uses targets T to compute the gradient based on the
output error instead of output_grad"""
pass複製程式碼
class LinearLayer(Layer):
"""The linear layer performs a linear transformation to its input."""
def __init__(self, n_in, n_out):
"""Initialize hidden layer parameters.
n_in is the number of input variables.
n_out is the number of output variables."""
self.W = np.random.randn(n_in, n_out) * 0.1
self.b = np.zeros(n_out)
def get_params_iter(self):
"""Return an iterator over the parameters."""
return itertools.chain(np.nditer(self.W, op_flags=['readwrite']),
np.nditer(self.b, op_flags=['readwrite']))
def get_output(self, X):
"""Perform the forward step linear transformation."""
return X.dot(self.W) + self.b
def get_params_grad(self, X, output_grad):
"""Return a list of gradients over the parameters."""
JW = X.T.dot(output_grad)
Jb = np.sum(output_grad, axis=0)
return [g for g in itertools.chain(np.nditer(JW), np.nditer(Jb))]
def get_input_grad(self, Y, output_grad):
"""Return the gradient at the inputs of this layer."""
return output_grad.dot(self.W.T)複製程式碼
class LogisticLayer(Layer):
"""The logistic layer applies the logistic function to its inputs."""
def get_output(self, X):
"""Perform the forward step transformation."""
return logistic(X)
def get_input_grad(self, Y, output_grad):
"""Return the gradient at the inputs of this layer."""
return np.multiply(logistic_deriv(Y), output_grad)複製程式碼
class SoftmaxOutputLayer(Layer):
"""The softmax output layer computes the classification propabilities at the output."""
def get_output(self, X):
"""Perform the forward step transformation."""
return softmax(X)
def get_input_grad(self, Y, T):
"""Return the gradient at the inputs of this layer."""
return (Y - T) / Y.shape[0]
def get_cost(self, Y, T):
"""Return the cost at the output of this output layer."""
return - np.multiply(T, np.log(Y)).sum() / Y.shape[0]複製程式碼
樣本模型
接下來的部分,我們會實現設計的各個網路層,以及層與層之間的線性轉換,神經元的非線性啟用。
在這個教程中,我們使用的樣本模型是由兩個隱藏層,Logistic函式作為啟用函式,最後使用softmax函式作為分類的一個神經網路模型。第一層的隱藏層將輸入的資料從64維度降維到20維度。第二層的隱藏層將前一層輸入的20維度經過對映之後,還是以20維度輸出。最後一層的輸出層是一個10維度的分類結果。下圖具體描述了這種架構的實現:
這個神經網路被表示成一種序列模型,即當前層的輸入資料是前一層的輸出資料,當前層的輸出資料將成為下一層的輸入資料。第一層作為序列的第0位,最後一層作為序列的索引最後位置。
# Define a sample model to be trained on the data
hidden_neurons_1 = 20 # Number of neurons in the first hidden-layer
hidden_neurons_2 = 20 # Number of neurons in the second hidden-layer
# Create the model
layers = [] # Define a list of layers
# Add first hidden layer
layers.append(LinearLayer(X_train.shape[1], hidden_neurons_1))
layers.append(LogisticLayer())
# Add second hidden layer
layers.append(LinearLayer(hidden_neurons_1, hidden_neurons_2))
layers.append(LogisticLayer())
# Add output layer
layers.append(LinearLayer(hidden_neurons_2, T_train.shape[1]))
layers.append(SoftmaxOutputLayer())複製程式碼
BP演算法
BP演算法在正向傳播過程和反向傳播過程中的具體細節已經在第四部分中進行了詳細的解釋,如果對此還有疑問,建議再去學習一下。這一部分,我們只單純實現在多層神經網路中的BP演算法。
正向傳播過程
在下列程式碼中,forward_step
函式實現了正向傳播過程。get_output
函式實現了每層的輸出結果。這些啟用的輸出結果被儲存在activations
列表中。
# Define the forward propagation step as a method.
def forward_step(input_samples, layers):
"""
Compute and return the forward activation of each layer in layers.
Input:
input_samples: A matrix of input samples (each row is an input vector)
layers: A list of Layers
Output:
A list of activations where the activation at each index i+1 corresponds to
the activation of layer i in layers. activations[0] contains the input samples.
"""
activations = [input_samples] # List of layer activations
# Compute the forward activations for each layer starting from the first
X = input_samples
for layer in layers:
Y = layer.get_output(X) # Get the output of the current layer
activations.append(Y) # Store the output for future processing
X = activations[-1] # Set the current input as the activations of the previous layer
return activations # Return the activations of each layer複製程式碼
反向傳播過程
在反向傳播過程中,backward_step
函式實現了反向傳播過程。反向傳播過程的計算是從最後一層開始的。先利用get_input_grad
函式得到最初的梯度。然後,利用get_params_grad
函式計算每一層的誤差函式的梯度,並且把這些梯度儲存在一個列表中。
# Define the backward propagation step as a method
def backward_step(activations, targets, layers):
"""
Perform the backpropagation step over all the layers and return the parameter gradients.
Input:
activations: A list of forward step activations where the activation at
each index i+1 corresponds to the activation of layer i in layers.
activations[0] contains the input samples.
targets: The output targets of the output layer.
layers: A list of Layers corresponding that generated the outputs in activations.
Output:
A list of parameter gradients where the gradients at each index corresponds to
the parameters gradients of the layer at the same index in layers.
"""
param_grads = collections.deque() # List of parameter gradients for each layer
output_grad = None # The error gradient at the output of the current layer
# Propagate the error backwards through all the layers.
# Use reversed to iterate backwards over the list of layers.
for layer in reversed(layers):
Y = activations.pop() # Get the activations of the last layer on the stack
# Compute the error at the output layer.
# The output layer error is calculated different then hidden layer error.
if output_grad is None:
input_grad = layer.get_input_grad(Y, targets)
else: # output_grad is not None (layer is not output layer)
input_grad = layer.get_input_grad(Y, output_grad)
# Get the input of this layer (activations of the previous layer)
X = activations[-1]
# Compute the layer parameter gradients used to update the parameters
grads = layer.get_params_grad(X, output_grad)
param_grads.appendleft(grads)
# Compute gradient at output of previous layer (input of current layer):
output_grad = input_grad
return list(param_grads) # Return the parameter gradients複製程式碼
梯度檢查
正如在第四部分中的分析,我們通過比較數值梯度和反向傳播計算的梯度,來分析梯度是否正確。
在程式碼中,get_params_iter
函式實現了得到每一層的引數,並且返回一個所有引數的迭代。get_params_grad
函式根據反向傳播,得到每一個引數對應的梯度。
# Perform gradient checking
nb_samples_gradientcheck = 10 # Test the gradients on a subset of the data
X_temp = X_train[0:nb_samples_gradientcheck,:]
T_temp = T_train[0:nb_samples_gradientcheck,:]
# Get the parameter gradients with backpropagation
activations = forward_step(X_temp, layers)
param_grads = backward_step(activations, T_temp, layers)
# Set the small change to compute the numerical gradient
eps = 0.0001
# Compute the numerical gradients of the parameters in all layers.
for idx in range(len(layers)):
layer = layers[idx]
layer_backprop_grads = param_grads[idx]
# Compute the numerical gradient for each parameter in the layer
for p_idx, param in enumerate(layer.get_params_iter()):
grad_backprop = layer_backprop_grads[p_idx]
# + eps
param += eps
plus_cost = layers[-1].get_cost(forward_step(X_temp, layers)[-1], T_temp)
# - eps
param -= 2 * eps
min_cost = layers[-1].get_cost(forward_step(X_temp, layers)[-1], T_temp)
# reset param value
param += eps
# calculate numerical gradient
grad_num = (plus_cost - min_cost)/(2*eps)
# Raise error if the numerical grade is not close to the backprop gradient
if not np.isclose(grad_num, grad_backprop):
raise ValueError('Numerical gradient of {:.6f} is not close to the backpropagation gradient of {:.6f}!'.format(float(grad_num), float(grad_backprop)))
print('No gradient errors found')複製程式碼
No gradient errors found
BP演算法中的隨機梯度下降
這個教程我們使用一個梯度下降的改進版,稱為隨機梯度下降,來優化我們的損失函式。在一整個訓練集上面,隨機梯度下降演算法只選擇一個子集按照負梯度的方向進行更新。這樣處理有以下幾個好處:第一,在一個大型的訓練資料集上面,我們可以節省時間和記憶體,因為這個演算法減少了很多的矩陣操作。第二,增加了訓練樣本的多樣性。
損失函式需要和輸入樣本的數量之間相互獨立,因為在隨機梯度演算法處理的每一個過程中,樣本子集的數量這一資訊都被使用了。這也是為什麼我們使用損失函授的均方誤差,而不是平方誤差。
批處理的最小數量
訓練樣本的子集經常被稱之為最小批處理單位。在下面的程式碼中,我們將最小批處理單位設定成25,並且將輸入資料和目標資料打包成一個元祖輸入到網路中。
# Create the minibatches
batch_size = 25 # Approximately 25 samples per batch
nb_of_batches = X_train.shape[0] / batch_size # Number of batches
# Create batches (X,Y) from the training set
XT_batches = zip(
np.array_split(X_train, nb_of_batches, axis=0), # X samples
np.array_split(T_train, nb_of_batches, axis=0)) # Y targets複製程式碼
隨機梯度下降演算法的更新
在程式碼中,update_params
函式中實現了對每個引數的更新操作。在每一次的迭代中,我們都使用最簡單的梯度下降演算法來處理引數的更新,即:
其中,μ
是學習率。
nb_of_iterations
函式實現了,更新操作將會在一整個訓練集上面進行多次迭代,每一次迭代都是取最小批處理單位的資料量。在每次全部迭代完之後,模型將會在驗證集上面進行測試。如果在驗證集上面,經過三次的完全迭代,損失函式的值沒有下降,那麼我們就認為模型已經過擬合了,需要終止模型的訓練。或者經過設定的最大值300次,模型也會被終止訓練。所以的損失誤差值將會被儲存下來,以便後續的分析。
# Define a method to update the parameters
def update_params(layers, param_grads, learning_rate):
"""
Function to update the parameters of the given layers with the given gradients
by gradient descent with the given learning rate.
"""
for layer, layer_backprop_grads in zip(layers, param_grads):
for param, grad in itertools.izip(layer.get_params_iter(), layer_backprop_grads):
# The parameter returned by the iterator point to the memory space of
# the original layer and can thus be modified inplace.
param -= learning_rate * grad # Update each parameter複製程式碼
# Perform backpropagation
# initalize some lists to store the cost for future analysis
minibatch_costs = []
training_costs = []
validation_costs = []
max_nb_of_iterations = 300 # Train for a maximum of 300 iterations
learning_rate = 0.1 # Gradient descent learning rate
# Train for the maximum number of iterations
for iteration in range(max_nb_of_iterations):
for X, T in XT_batches: # For each minibatch sub-iteration
activations = forward_step(X, layers) # Get the activations
minibatch_cost = layers[-1].get_cost(activations[-1], T) # Get cost
minibatch_costs.append(minibatch_cost)
param_grads = backward_step(activations, T, layers) # Get the gradients
update_params(layers, param_grads, learning_rate) # Update the parameters
# Get full training cost for future analysis (plots)
activations = forward_step(X_train, layers)
train_cost = layers[-1].get_cost(activations[-1], T_train)
training_costs.append(train_cost)
# Get full validation cost
activations = forward_step(X_validation, layers)
validation_cost = layers[-1].get_cost(activations[-1], T_validation)
validation_costs.append(validation_cost)
if len(validation_costs) > 3:
# Stop training if the cost on the validation set doesn't decrease
# for 3 iterations
if validation_costs[-1] >= validation_costs[-2] >= validation_costs[-3]:
break
nb_of_iterations = iteration + 1 # The number of iterations that have been executed複製程式碼
minibatch_x_inds = np.linspace(0, nb_of_iterations, num=nb_of_iterations*nb_of_batches)
iteration_x_inds = np.linspace(1, nb_of_iterations, num=nb_of_iterations)
# Plot the cost over the iterations
plt.plot(minibatch_x_inds, minibatch_costs, 'k-', linewidth=0.5, label='cost minibatches')
plt.plot(iteration_x_inds, training_costs, 'r-', linewidth=2, label='cost full training set')
plt.plot(iteration_x_inds, validation_costs, 'b-', linewidth=3, label='cost validation set')
# Add labels to the plot
plt.xlabel('iteration')
plt.ylabel('$\\xi$', fontsize=15)
plt.title('Decrease of cost over backprop iteration')
plt.legend()
x1,x2,y1,y2 = plt.axis()
plt.axis((0,nb_of_iterations,0,2.5))
plt.grid()
plt.show()複製程式碼
模型在測試集上面的效能
最後,我們在測試集上面進行模型的最終測試。在這個模型中,我們最後的訓練正確率是96%。
最後的結果可以利用混淆圖進行更加深入的分析。這個表展示了每一個手寫數字被分類為什麼數字的數量。下圖是利用scikit-learn
的confusion_matrix
方法實現的。
比如,數字8被誤分類了五次,其中,兩次被分類成了2,兩次被分類成了5,一次被分類成了9。
# Get results of test data
y_true = np.argmax(T_test, axis=1) # Get the target outputs
activations = forward_step(X_test, layers) # Get activation of test samples
y_pred = np.argmax(activations[-1], axis=1) # Get the predictions made by the network
test_accuracy = metrics.accuracy_score(y_true, y_pred) # Test set accuracy
print('The accuracy on the test set is {:.2f}'.format(test_accuracy))複製程式碼
The accuracy on the test set is 0.96
# Show confusion table
conf_matrix = metrics.confusion_matrix(y_true, y_pred, labels=None) # Get confustion matrix
# Plot the confusion table
class_names = ['${:d}$'.format(x) for x in range(0, 10)] # Digit class names
fig = plt.figure()
ax = fig.add_subplot(111)
# Show class labels on each axis
ax.xaxis.tick_top()
major_ticks = range(0,10)
minor_ticks = [x + 0.5 for x in range(0, 10)]
ax.xaxis.set_ticks(major_ticks, minor=False)
ax.yaxis.set_ticks(major_ticks, minor=False)
ax.xaxis.set_ticks(minor_ticks, minor=True)
ax.yaxis.set_ticks(minor_ticks, minor=True)
ax.xaxis.set_ticklabels(class_names, minor=False, fontsize=15)
ax.yaxis.set_ticklabels(class_names, minor=False, fontsize=15)
# Set plot labels
ax.yaxis.set_label_position("right")
ax.set_xlabel('Predicted label')
ax.set_ylabel('True label')
fig.suptitle('Confusion table', y=1.03, fontsize=15)
# Show a grid to seperate digits
ax.grid(b=True, which=u'minor')
# Color each grid cell according to the number classes predicted
ax.imshow(conf_matrix, interpolation='nearest', cmap='binary')
# Show the number of samples in each cell
for x in xrange(conf_matrix.shape[0]):
for y in xrange(conf_matrix.shape[1]):
color = 'w' if x == y else 'k'
ax.text(x, y, conf_matrix[y,x], ha="center", va="center", color=color)
plt.show()複製程式碼
CoderPai 是一個專注於演算法實戰的平臺,從基礎的演算法到人工智慧演算法都有設計。如果你對演算法實戰感興趣,請快快關注我們吧。加入AI實戰微信群,AI實戰QQ群,ACM演算法微信群,ACM演算法QQ群。詳情請關注 “CoderPai” 微訊號(coderpai)。