POJ 2240 Arbitrage(Floyd最短路)
Arbitrage
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 22202 Accepted: 9426
Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 US Dollar buys 0.5 British pound, 1 British pound buys 10.0 French francs, and 1 French franc buys 0.21 US dollar. Then, by converting currencies, a clever trader can start with 1 US dollar and buy 0.5 * 10.0 * 0.21 = 1.05 US dollars, making a profit of 5 percent.
Your job is to write a program that takes a list of currency exchange rates as input and then determines whether arbitrage is possible or not.
The input will contain one or more test cases. Om the first line of each test case there is an integer n (1<=n<=30), representing the number of different currencies. The next n lines each contain the name of one currency. Within a name no spaces will appear. The next line contains one integer m, representing the length of the table to follow. The last m lines each contain the name ci of a source currency, a real number rij which represents the exchange rate from ci to cj and a name cj of the destination currency. Exchanges which do not appear in the table are impossible.
Test cases are separated from each other by a blank line. Input is terminated by a value of zero (0) for n.
For each test case, print one line telling whether arbitrage is possible or not in the format "Case case: Yes" respectively "Case case: No".
3
USDollar
BritishPound
FrenchFranc
3
USDollar 0.5 BritishPound
BritishPound 10.0 FrenchFranc
FrenchFranc 0.21 USDollar
3
USDollar
BritishPound
FrenchFranc
6
USDollar 0.5 BritishPound
USDollar 4.9 FrenchFranc
BritishPound 10.0 FrenchFranc
BritishPound 1.99 USDollar
FrenchFranc 0.09 BritishPound
FrenchFranc 0.19 USDollar
0
Sample Output
Case 1: Yes
Case 2: No
題意:給出n種貨幣,以及m種貨幣的匯率,問有沒有一種貨幣,經過多次兌換後獲得更多的價值(比如1美元經過多次兌換後獲得1.2美元),如果有輸出Yes,否則輸出No;
思路:可以看成一個圖,每種貨幣代表圖的頂點,兩種貨幣之間的匯率代表兩點之間路徑的權值,這樣就構成一個有向圖,然後用最短路思想改進Floyd演算法,算出任意兩點間的最大兌換價值 ,最後查詢是否存在一種貨幣對自己的匯率大於1,,,
AC程式碼:
#include<stdio.h>
#include<string.h>
char s[105][105],a[105],b[105];
int main(){
int i,j,k;
int n,m;
double v;
double map[35][35];
int t=1;
while(scanf("%d",&n),n){
for(i=0;i<n;i++){
for(j=0;j<n;j++){
if(i==j)
map[i][j]=1; //對自己的匯率為1
else
map[i][j]=0;
}
}
for(i=0;i<n;i++)
scanf("%s",s[i]);
scanf("%d",&m);
for(i=0;i<m;i++){
scanf("%s%lf%s",a,&v,b);
for(j=0;j<n;j++){
if(strcmp(a,s[j])==0)
break;
}
for(k=0;k<n;k++){
if(strcmp(b,s[k])==0)
break;
}
map[j][k]=v; //找到對應的匯率並賦值
}
///Floyd求任意兩點間的最大兌換值
for(k=0;k<n;k++)
for(i=0;i<n;i++)
for(j=0;j<n;j++){
if(map[i][k]*map[k][j]>map[i][j])
map[i][j]=map[i][k]*map[k][j];
}
for(i=0;i<n;i++){
if(map[i][i]>1) ///是否存在貨幣,對自己的匯率大於1
break;
}
if(i==n)
printf("Case %d: No\n",t);
else
printf("Case %d: Yes\n",t);
t++;
}
return 0;
}
相關文章
- POJ 2240-Arbitrage(套匯-Bellman Ford)
- POJ2240 Arbitrage【判斷正環的存在】
- 最短路-Floyd
- Floyd最短路演算法演算法
- 最短路徑(Floyd演算法)演算法
- 最短路徑之Floyd演算法演算法
- [MATLAB]最短路徑Floyd演算法Matlab演算法
- Floyd演算法(計算最短路徑)演算法
- 最短路-SPFA演算法&Floyd演算法演算法
- 求最短路徑——DFS+Floyd演算法演算法
- 最短路演算法之:floyd 演算法演算法
- 最短路演算法詳解(Dijkstra/SPFA/Floyd)演算法
- 多源最短路徑演算法:Floyd演算法演算法
- 最短路徑——floyd演算法程式碼(c語言)演算法C語言
- POJ - 1556 【計算幾何 + 最短路】
- 多源最短路徑,一文搞懂Floyd演算法演算法
- 最短路徑——Dijkstra演算法和Floyd演算法演算法
- 最短路徑—Dijkstra演算法和Floyd演算法演算法
- 圖 - 每對頂點間最短路徑----Floyd演算法演算法
- POJ 1734 Sightseeing trip Floyd求無向圖最小環
- POJ 3613 Cow Relays 矩陣乘法Floyd+矩陣快速冪矩陣
- POJ 1094 Sorting It All Out Floyd_Washall+Topological_sort
- POJ3660 Cow Contest【Floyd演算法 傳遞閉包】演算法
- POJ 1511 Invitation Cards(最短路spfa演算法)演算法
- poj2594Treasure Exploration【最小路徑覆蓋+floyd傳遞閉包】
- 單源最短路徑複習--Dijkstra演算法和Floyd演算法演算法
- 【最短路徑Floyd演算法詳解推導過程】看完這篇,你還能不懂Floyd演算法?還不會?演算法
- POJ3013 Big Christmas Tree[轉換 最短路]
- POJ2387 Til the Cows Come Home【最短路 Dijkstra演算法】演算法
- 最短路徑--dijkstra演算法、弗洛伊德(Floyd)演算法(帶路徑輸出)演算法
- POJ 1062-昂貴的聘禮(最短路-預處理限制點)
- POJ 1062 昂貴的聘禮 (最短路應用 Dijkstra演算法)演算法
- 次短路
- 最短路
- 最大值(最短路+最短路計數)
- BZOJ2240 : ural1676 Mortal CombatBAT
- 【圖論】Floyd演算法圖論演算法
- poj 3764 最長異或路徑(二進位制trie樹)