codeforces 505C. Mr. Kitayuta, the Treasure Hunter (記憶化搜尋)

畫船聽雨發表於2015-01-20

題目大意:有30000個島嶼從左到右排列,給你一個n一個d,n代表有n個寶石分別,接下來n行表示每個寶石分別在哪個島嶼上,d代表你第一次從0開始跳躍到的位置,以後你每次可以從你的位置跳躍l-1,l,l+1的距離。

解題思路,其實以前做過一個類似的,他跳躍的步數其實很小,解設每次跳一步加以來也是(n+1)×n/2 = 30000差不多250左右,也就是說每次他最多也就會跳出來250種情況,所以,我們可以開dp[30010][500]再加一個偏移,這樣記憶化搜尋每個點,類似於樹形dp從根節點找到一個最長的鏈,每次分三個叉,一個是l-1, l, l+1三個方向向下找。

C. Mr. Kitayuta, the Treasure Hunter
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

The Shuseki Islands are an archipelago of 30001 small islands in the Yutampo Sea. The islands are evenly spaced along a line, numbered from 0 to 30000 from the west to the east. These islands are known to contain many treasures. There are n gems in the Shuseki Islands in total, and the i-th gem is located on island pi.

Mr. Kitayuta has just arrived at island 0. With his great jumping ability, he will repeatedly perform jumps between islands to the east according to the following process:

  • First, he will jump from island 0 to island d.
  • After that, he will continue jumping according to the following rule. Let l be the length of the previous jump, that is, if his previous jump was from island prev to island cur, let l = cur - prev. He will perform a jump of length l - 1, l or l + 1 to the east. That is, he will jump to island (cur + l - 1), (cur + l) or (cur + l + 1) (if they exist). The length of a jump must be positive, that is, he cannot perform a jump of length 0 when l = 1. If there is no valid destination, he will stop jumping.

Mr. Kitayuta will collect the gems on the islands visited during the process. Find the maximum number of gems that he can collect.

Input

The first line of the input contains two space-separated integers n and d (1 ≤ n, d ≤ 30000), denoting the number of the gems in the Shuseki Islands and the length of the Mr. Kitayuta's first jump, respectively.

The next n lines describe the location of the gems. The i-th of them (1 ≤ i ≤ n) contains a integer pi (d ≤ p1 ≤ p2 ≤ ... ≤ pn ≤ 30000), denoting the number of the island that contains the i-th gem.

Output

Print the maximum number of gems that Mr. Kitayuta can collect.

Sample test(s)
Input
4 10
10
21
27
27
Output
3
Input
8 8
9
19
28
36
45
55
66
78
Output
6
Input
13 7
8
8
9
16
17
17
18
21
23
24
24
26
30
Output
4
Note

In the first sample, the optimal route is 0  →  10 (+1 gem)  →  19  →  27 (+2 gems)  → ...

In the second sample, the optimal route is 0  →  8  →  15  →  21 →  28 (+1 gem)  →  36 (+1 gem)  →  45 (+1 gem)  →  55 (+1 gem)  →  66 (+1 gem)  →  78 (+1 gem)  → ...

In the third sample, the optimal route is 0  →  7  →  13  →  18 (+1 gem)  →  24 (+2 gems)  →  30 (+1 gem)  → ...

#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <iomanip>
#include <stdio.h>
#include <string>
#include <queue>
#include <cmath>
#include <stack>
#include <ctime>
#include <map>
#include <set>
#define eps 1e-9
///#define M 1000100
///#define LL __int64
#define LL long long
///#define INF 0x7ffffff
#define INF 0x3f3f3f3f
#define PI 3.1415926535898
#define zero(x) ((fabs(x)<eps)?0:x)
#define mod 1000000007
#define Read() freopen("autocomplete.in","r",stdin)
#define Write() freopen("autocomplete.out","w",stdout)
#define Cin() ios::sync_with_stdio(false)

using namespace std;



inline int read()
{
    char ch;
    bool flag = false;
    int a = 0;
    while(!((((ch = getchar()) >= '0') && (ch <= '9')) || (ch == '-')));
    if(ch != '-')
    {
        a *= 10;
        a += ch - '0';
    }
    else
    {
        flag = true;
    }
    while(((ch = getchar()) >= '0') && (ch <= '9'))
    {
        a *= 10;
        a += ch - '0';
    }
    if(flag)
    {
        a = -a;
    }
    return a;
}
void write(int a)
{
    if(a < 0)
    {
        putchar('-');
        a = -a;
    }
    if(a >= 10)
    {
        write(a / 10);
    }
    putchar(a % 10 + '0');
}

const int maxn = 30010;


int dp[maxn][520];
int dx[] = {-1, 0, 1};
int Max;
int num[maxn];
int sum[maxn];
int d;


int dfs(int pos, int l)
{
    int site = pos+l+d;
    if(l+d < 1 || site > Max)
    {
        return 0;
    }
    if(dp[site][l+250] != -1) return dp[site][l+250];
    if(l+d <= 2)
    {
        dp[site][l+250] = sum[site];
        return dp[site][l+250];
    }

    if(l+d == 3)
    {
        dp[site][l+250] = sum[site+2]+num[site];
        return dp[site][l+250];
    }
    int sum = 0;
    for(int i = 0; i < 3; i++)
    {
        int xl = l+dx[i];
        sum = max(sum, dfs(site, xl));
    }
    sum += num[site];
    return dp[site][l+250] = sum;
}


int main()
{
    int n;
    cin >>n>>d;
    memset(num, 0, sizeof(num));
    memset(dp, -1, sizeof(dp));
    memset(sum, 0, sizeof(sum));
    int x;
    Max = 0;
    for(int i = 0; i < n; i++)
    {
        scanf("%d",&x);
        Max = max(x, Max);
        num[x]++;
    }
    for(int i = Max; i >= 1; i--) sum[i] = sum[i+1]+num[i];
    x = dfs(0, 0);
    cout<<x<<endl;
    return 0;
}


相關文章