POJ 2195 Going Home 最小費用最大流
第二道費用流的題目,這道題目的建圖還是很簡單的啊,抽象出來一個超級源點,一個超級匯點。然後從每個人到房子的距離為花費,然後容量為1,建圖。一開始在建圖的問題上沒太想明白、、、感覺就得這麼建圖,好像也是蒙對了啊。後來LYN給我點播了一下。一開始我是考慮到一個房子會有對應多個人的情況,然後想不明白怎麼處理這些會有衝突的情況。後來想到了,spfa的時候就會把最優的一種情況先選出來。然後就是次優的情況了啊、所以不會再出現我擔心的那種重複了啊。而且會更新流量,相當於標記過了做過的路徑。所以就可以了啊。就是典型的最小費用最大流問題。
原來這道題目也可以用二分圖的最大權匹配來做,下面是,從寶哥那裡搞來的模版,寫的啊。
Going Home
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 16555 | Accepted: 8471 |
Description
On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters
a house. The task is complicated with the restriction that each house can accommodate only one little man.
Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates there is a little man on that point.
You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.
Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates there is a little man on that point.
You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.
Input
There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both
N and M are between 2 and 100, inclusive. There will be the same number of 'H's and 'm's on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.
Output
For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay.
Sample Input
2 2 .m H. 5 5 HH..m ..... ..... ..... mm..H 7 8 ...H.... ...H.... ...H.... mmmHmmmm ...H.... ...H.... ...H.... 0 0
Sample Output
2 10 28
#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <iomanip>
#include <stdio.h>
#include <string>
#include <queue>
#include <cmath>
#include <stack>
#include <map>
#include <set>
#define eps 1e-7
//#define M 1000100
//#define LL __int64
#define LL long long
#define INF 0x3f3f3f3f
#define PI 3.1415926535898
const int maxn = 1100;
using namespace std;
int c[maxn][maxn];//流量限制;
int dis[maxn];//最短路徑
int w[maxn][maxn];//費用;
int visit[maxn];//標記;
int path[maxn];//記錄路徑;
int f[maxn][maxn];//最大流量限制;
int S,T;//超級匯點與源點;
char str[maxn][maxn];
int sum;
struct node
{
int x, y;
} H[maxn], M[maxn];
int spfa()
{
int i;
queue<int> q;
for(i = 0; i <= T; i++)
{
visit[i] = 0;
path[i] = -1;
dis[i] = INF;
}
dis[S] = 0;
q.push(S);
visit[S] = 1;
while(!q.empty())
{
int u = q.front();
q.pop();
visit[u] = 0;
for(int v = 1; v <= T; v++)
{
if(c[u][v] > f[u][v] && dis[v] > dis[u]+w[u][v])
{
path[v] = u;
dis[v] = dis[u]+w[u][v];
if(!visit[v])
{
visit[v] = 1;
q.push(v);
}
}
}
}
if(path[T] == -1)
return 0;
return 1;
}
void find_max_road()
{
while(spfa())//每次spfa求出一條增廣路
{
int _max = INF;
int pre = T;
while(path[pre] != -1)
{
_max = min(_max, c[path[pre]][pre]-f[path[pre]][pre]);
pre = path[pre];
}
pre = T;
while(pre != -1)//更新流量
{
f[path[pre]][pre] += _max;
f[pre][path[pre]] = -f[path[pre]][pre];
pre = path[pre];
}
}
}
int main()
{
int n, m;
while(cin >>n>>m)
{
if(!n && !m)
break;
sum = 0;
for(int i = 0; i < n; i++)
cin >>str[i];
int t1 = 0;
int t2 = 0;
memset(w , 0 , sizeof(w));
memset(c , 0 , sizeof(c));
memset(f , 0 , sizeof(f));
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
{
if(str[i][j] == 'm')
{
M[++t1].x = i;
M[t1].y = j;
}
else if(str[i][j] == 'H')
{
H[++t2].x = i;
H[t2].y = j;
}
}
for(int i = 1; i <= t1; i++)
{
for(int j = t1+1; j <= 2*t1; j++)
{
w[i][j] = abs(H[i].x-M[j-t1].x)+abs(H[i].y-M[j-t1].y);
w[j][i] = -w[i][j];
c[i][j] = 1;
}
}
S = 0;
T = 2*t1+1;
for(int i = 1; i <= t1; i++)
{
w[S][i] = 0;
c[S][i] = 1;
}
for(int j = t1+1; j <= 2*t1; j++)
{
w[j][T] = 0;
c[j][T] = 1;
}
find_max_road();
for(int i = 1; i <= t1; i++)
for(int j = 1; j <= t2; j++)
{
sum += f[i][j+t1]*w[i][j+t1];
}
cout<<sum<<endl;
}
return 0;
}
KM演算法:
#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <iomanip>
#include <stdio.h>
#include <string>
#include <queue>
#include <cmath>
#include <stack>
#include <map>
#include <set>
#define eps 1e-7
#define M 1000100
//#define LL __int64
#define LL long long
#define INF 0x3f3f3f3f
#define PI 3.1415926535898
const int maxn = 110;
using namespace std;
struct node
{
int x, y;
} p[100*maxn], h[100*maxn];
int link[maxn], w[110][110];
int lx[maxn], ly[maxn];//記錄頂標;
int slack[maxn];
bool vtx[maxn], vty[maxn];
int nx, ny, n, m;
char str[110][110];
bool dfs(int i)
{
int j;
vtx[i] = true;
for(j = 0; j < ny; j++)
{
if(vty[j]) continue;
int tmp = lx[i] + ly[j] - w[i][j];
if(tmp == 0)
{
vty[j] = true;
if(dfs(link[j]) || link[j] == -1)
{
link[j] = i;
return true;
}
}
else
slack[j] = min(tmp, slack[j]);
}
return false;
}
int KM()
{
for(int i = 0; i < nx; i++)
{
lx[i] = -INF;
for(int j = 0 ; j < ny; j++)
{
lx[i] = max(lx[i], w[i][j]);
}
}
memset(link , -1 , sizeof(link));
memset(ly , 0 , sizeof(ly));
for(int i = 0; i < nx; i++)
{
for(int j = 0; j < ny; j++)
slack[j] = INF;
while(1)
{
memset(vtx , false , sizeof(vtx));
memset(vty , false , sizeof(vty));
if(dfs(i))
break;
int d = INF;
for(int j = 0; j < ny; j++)
{
if(!vty[j] && d > slack[j])
d = slack[j];
}
if(d == INF) return -1;
for(int j = 0; j < nx; j++)
if(vtx[j])
lx[j] -= d;
for(int j = 0; j < ny; j++)
{
if(vty[j])
ly[j] += d;
else
slack[j] -= d;
}
}
}
int sum = 0;
for(int i = 0; i < ny; i++)
{
if(link[i] > -1)
sum += w[link[i]][i];
}
return sum;
}
int main()
{
while(cin >>n>>m)
{
if(!n && !m)
break;
nx = ny = 0;
for(int i = 0; i < n; i++)
{
cin >>str[i];
for(int j = 0; j < m; j++)
{
if(str[i][j] == 'm')
{
p[nx].x = i;
p[nx++].y = j;
}
else if(str[i][j] == 'H')
{
h[ny].x = i;
h[ny++].y = j;
}
}
}
for(int i = 0; i < nx; i++)
for(int j = 0; j < ny; j++)
w[i][j] = -INF;
for(int i = 0; i < nx; i++)
for(int j = 0; j < ny; j++)
w[i][j] = -(abs(p[i].x - h[j].x) + abs(p[i].y - h[j].y));
cout<<-KM()<<endl;
}
return 0;
}
相關文章
- POJ 2195 Going Home (最小費用最大流)Go
- POJ 2195-Going Home(KM演算法/最小費用最大流演算法)Go演算法
- 網路中最小費用最大流
- POJ 3308 Paratroopers 最小割、最大流OOP
- POJ 3469-Dual Core CPU(Dinic 最大流/最小割演算法)演算法
- 網路流(最大流,最小割)
- bzoj1834: [ZJOI2010]network 網路擴容(最小費用最大流)
- poj1087 網路最大流
- matlab練習程式(最大流/最小割)Matlab
- 偷寶石(最大流轉化最小割)
- POJ2387-Til the Cows Come Home
- poj 3436 最大流的增廣路演算法演算法
- 網路流最大流、最小割學習筆記筆記
- POJ 2051(最小堆/優先佇列)佇列
- POJ1273 Drainage Ditches【網路流 最大流】AI
- where are you going ? 反序為:going you are whereGo
- POJ 1465-Multiple(BFS-最小整倍數)
- POJ 1459-Power Network(最大流-Edmond-Karp演算法)演算法
- POJ 3565 Ants (最小權完美匹配 KM演算法)演算法
- POJ 2387-Til the Cows Come Home(Dijkstra+堆優化)優化
- POJ 1734 Sightseeing trip Floyd求無向圖最小環
- POJ 1273-Drainage Ditches(最大流-Edmond-Karp演算法/模板)AI演算法
- POJ2387 Til the Cows Come Home【最短路 Dijkstra演算法】演算法
- 轉:How is Internat Bank going?Go
- POJ--2406Power Strings+KMP求字串最小週期KMP字串
- POJ2031 Building a Space Station(最小生成樹,prim)UI
- POJ 3436-ACM Computer Factory(最大流輸出路徑-Edmond-Karp演算法)ACM演算法
- POJ 1149-PIGS(Ford-Fulkerson 標號法求網路最大流)
- POJ 2914-Minimum Cut(Stoer_Wagner最小割演算法)演算法
- poj2594Treasure Exploration【最小路徑覆蓋+floyd傳遞閉包】
- 746. 使用最小花費爬樓梯
- POJ 3253-Fence Repair(哈夫曼樹-最小值優先佇列)AI佇列
- 蘋果應用快速啟動器: Alfred 5 for Mac v5.1.4 (2195)中/英免啟用版蘋果AlfredMac
- 京東技術:用最小的圖片格式,打造最優的使用者體驗
- GI PSU滾動方式應用GI HOME和DB HOME(opatch auto together)
- cf1945D 插隊的最小花費
- spoj 839 最小割應用
- [Python手撕]使用最小花費爬樓梯Python