RunLoop-b

weixin_33912246發表於2016-06-12

RunLoop 是 iOS 和 OSX 開發中非常基礎的一個概念,這篇文章將從 CFRunLoop 的原始碼入手,介紹 RunLoop 的概念以及底層實現原理。之後會介紹一下在 iOS 中,蘋果是如何利用 RunLoop 實現自動釋放池、延遲迴調、觸控事件、螢幕重新整理等功能的。

Index
RunLoop 的概念
RunLoop 與執行緒的關係
RunLoop 對外的介面
RunLoop 的 Mode
RunLoop 的內部邏輯
RunLoop 的底層實現
蘋果用 RunLoop 實現的功能
AutoreleasePool
事件響應
手勢識別
介面更新
定時器
PerformSelecter
關於GCD
關於網路請求
RunLoop 的實際應用舉例
AFNetworking
AsyncDisplayKit

 

RunLoop 的概念

一般來講,一個執行緒一次只能執行一個任務,執行完成後執行緒就會退出。如果我們需要一個機制,讓執行緒能隨時處理事件但並不退出,通常的程式碼邏輯是這樣的:

這種模型通常被稱作 Event Loop。 Event Loop 在很多系統和框架裡都有實現,比如 Node.js 的事件處理,比如 Windows 程式的訊息迴圈,再比如 OSX/iOS 裡的 RunLoop。實現這種模型的關鍵點在於:如何管理事件/訊息,如何讓執行緒在沒有處理訊息時休眠以避免資源佔用、在有訊息到來時立刻被喚醒。

所以,RunLoop 實際上就是一個物件,這個物件管理了其需要處理的事件和訊息,並提供了一個入口函式來執行上面 Event Loop 的邏輯。執行緒執行了這個函式後,就會一直處於這個函式內部 "接受訊息->等待->處理" 的迴圈中,直到這個迴圈結束(比如傳入 quit 的訊息),函式返回。

OSX/iOS 系統中,提供了兩個這樣的物件:NSRunLoop 和 CFRunLoopRef。
CFRunLoopRef 是在 CoreFoundation 框架內的,它提供了純 C 函式的 API,所有這些 API 都是執行緒安全的。
NSRunLoop 是基於 CFRunLoopRef 的封裝,提供了物件導向的 API,但是這些 API 不是執行緒安全的。

CFRunLoopRef 的程式碼是開源的,你可以在這裡 http://opensource.apple.com/tarballs/CF/ 下載到整個 CoreFoundation 的原始碼來檢視。

(Update: Swift 開源後,蘋果又維護了一個跨平臺的 CoreFoundation 版本:https://github.com/apple/swift-corelibs-foundation/,這個版本的原始碼可能和現有 iOS 系統中的實現略不一樣,但更容易編譯,而且已經適配了 Linux/Windows。)

RunLoop 與執行緒的關係

首先,iOS 開發中能遇到兩個執行緒物件: pthread_t 和 NSThread。過去蘋果有份文件標明瞭 NSThread 只是 pthread_t 的封裝,但那份文件已經失效了,現在它們也有可能都是直接包裝自最底層的 mach thread。蘋果並沒有提供這兩個物件相互轉換的介面,但不管怎麼樣,可以肯定的是 pthread_t 和 NSThread 是一一對應的。比如,你可以通過 pthread_main_thread_np() 或 [NSThread mainThread] 來獲取主執行緒;也可以通過 pthread_self() 或 [NSThread currentThread] 來獲取當前執行緒。CFRunLoop 是基於 pthread 來管理的。

蘋果不允許直接建立 RunLoop,它只提供了兩個自動獲取的函式:CFRunLoopGetMain() 和 CFRunLoopGetCurrent()。 這兩個函式內部的邏輯大概是下面這樣:

從上面的程式碼可以看出,執行緒和 RunLoop 之間是一一對應的,其關係是儲存在一個全域性的 Dictionary 裡。執行緒剛建立時並沒有 RunLoop,如果你不主動獲取,那它一直都不會有。RunLoop 的建立是發生在第一次獲取時,RunLoop 的銷燬是發生線上程結束時。你只能在一個執行緒的內部獲取其 RunLoop(主執行緒除外)。

RunLoop 對外的介面

在 CoreFoundation 裡面關於 RunLoop 有5個類:

CFRunLoopRef
CFRunLoopModeRef
CFRunLoopSourceRef
CFRunLoopTimerRef
CFRunLoopObserverRef

其中 CFRunLoopModeRef 類並沒有對外暴露,只是通過 CFRunLoopRef 的介面進行了封裝。他們的關係如下:
RunLoop_0

一個 RunLoop 包含若干個 Mode,每個 Mode 又包含若干個 Source/Timer/Observer。每次呼叫 RunLoop 的主函式時,只能指定其中一個 Mode,這個Mode被稱作 CurrentMode。如果需要切換 Mode,只能退出 Loop,再重新指定一個 Mode 進入。這樣做主要是為了分隔開不同組的 Source/Timer/Observer,讓其互不影響。

CFRunLoopSourceRef 是事件產生的地方。Source有兩個版本:Source0 和 Source1。
• Source0 只包含了一個回撥(函式指標),它並不能主動觸發事件。使用時,你需要先呼叫 CFRunLoopSourceSignal(source),將這個 Source 標記為待處理,然後手動呼叫 CFRunLoopWakeUp(runloop) 來喚醒 RunLoop,讓其處理這個事件。
• Source1 包含了一個 mach_port 和一個回撥(函式指標),被用於通過核心和其他執行緒相互傳送訊息。這種 Source 能主動喚醒 RunLoop 的執行緒,其原理在下面會講到。

CFRunLoopTimerRef 是基於時間的觸發器,它和 NSTimer 是toll-free bridged 的,可以混用。其包含一個時間長度和一個回撥(函式指標)。當其加入到 RunLoop 時,RunLoop會註冊對應的時間點,當時間點到時,RunLoop會被喚醒以執行那個回撥。

CFRunLoopObserverRef 是觀察者,每個 Observer 都包含了一個回撥(函式指標),當 RunLoop 的狀態發生變化時,觀察者就能通過回撥接受到這個變化。可以觀測的時間點有以下幾個:

上面的 Source/Timer/Observer 被統稱為 mode item,一個 item 可以被同時加入多個 mode。但一個 item 被重複加入同一個 mode 時是不會有效果的。如果一個 mode 中一個 item 都沒有,則 RunLoop 會直接退出,不進入迴圈。

RunLoop 的 Mode

CFRunLoopMode 和 CFRunLoop 的結構大致如下:

這裡有個概念叫 "CommonModes":一個 Mode 可以將自己標記為"Common"屬性(通過將其 ModeName 新增到 RunLoop 的 "commonModes" 中)。每當 RunLoop 的內容發生變化時,RunLoop 都會自動將 _commonModeItems 裡的 Source/Observer/Timer 同步到具有 "Common" 標記的所有Mode裡。

應用場景舉例:主執行緒的 RunLoop 裡有兩個預置的 Mode:kCFRunLoopDefaultMode 和 UITrackingRunLoopMode。這兩個 Mode 都已經被標記為"Common"屬性。DefaultMode 是 App 平時所處的狀態,TrackingRunLoopMode 是追蹤 ScrollView 滑動時的狀態。當你建立一個 Timer 並加到 DefaultMode 時,Timer 會得到重複回撥,但此時滑動一個TableView時,RunLoop 會將 mode 切換為 TrackingRunLoopMode,這時 Timer 就不會被回撥,並且也不會影響到滑動操作。

有時你需要一個 Timer,在兩個 Mode 中都能得到回撥,一種辦法就是將這個 Timer 分別加入這兩個 Mode。還有一種方式,就是將 Timer 加入到頂層的 RunLoop 的 "commonModeItems" 中。"commonModeItems" 被 RunLoop 自動更新到所有具有"Common"屬性的 Mode 裡去。

CFRunLoop對外暴露的管理 Mode 介面只有下面2個:

Mode 暴露的管理 mode item 的介面有下面幾個:

你只能通過 mode name 來操作內部的 mode,當你傳入一個新的 mode name 但 RunLoop 內部沒有對應 mode 時,RunLoop會自動幫你建立對應的 CFRunLoopModeRef。對於一個 RunLoop 來說,其內部的 mode 只能增加不能刪除。

蘋果公開提供的 Mode 有兩個:kCFRunLoopDefaultMode (NSDefaultRunLoopMode) 和 UITrackingRunLoopMode,你可以用這兩個 Mode Name 來操作其對應的 Mode。

同時蘋果還提供了一個操作 Common 標記的字串:kCFRunLoopCommonModes (NSRunLoopCommonModes),你可以用這個字串來操作 Common Items,或標記一個 Mode 為 "Common"。使用時注意區分這個字串和其他 mode name。

RunLoop 的內部邏輯

根據蘋果在文件裡的說明,RunLoop 內部的邏輯大致如下:

RunLoop_1

其內部程式碼整理如下 (太長了不想看可以直接跳過去,後面會有說明):

可以看到,實際上 RunLoop 就是這樣一個函式,其內部是一個 do-while 迴圈。當你呼叫 CFRunLoopRun() 時,執行緒就會一直停留在這個迴圈裡;直到超時或被手動停止,該函式才會返回。

RunLoop 的底層實現

從上面程式碼可以看到,RunLoop 的核心是基於 mach port 的,其進入休眠時呼叫的函式是 mach_msg()。為了解釋這個邏輯,下面稍微介紹一下 OSX/iOS 的系統架構。
RunLoop_3

蘋果官方將整個系統大致劃分為上述4個層次:
應用層包括使用者能接觸到的圖形應用,例如 Spotlight、Aqua、SpringBoard 等。
應用框架層即開發人員接觸到的 Cocoa 等框架。
核心框架層包括各種核心框架、OpenGL 等內容。
Darwin 即作業系統的核心,包括系統核心、驅動、Shell 等內容,這一層是開源的,其所有原始碼都可以在 opensource.apple.com 裡找到。

我們在深入看一下 Darwin 這個核心的架構:
RunLoop_4

其中,在硬體層上面的三個組成部分:Mach、BSD、IOKit (還包括一些上面沒標註的內容),共同組成了 XNU 核心。
XNU 核心的內環被稱作 Mach,其作為一個微核心,僅提供了諸如處理器排程、IPC (程式間通訊)等非常少量的基礎服務。
BSD 層可以看作圍繞 Mach 層的一個外環,其提供了諸如程式管理、檔案系統和網路等功能。
IOKit 層是為裝置驅動提供了一個物件導向(C++)的一個框架。

Mach 本身提供的 API 非常有限,而且蘋果也不鼓勵使用 Mach 的 API,但是這些API非常基礎,如果沒有這些API的話,其他任何工作都無法實施。在 Mach 中,所有的東西都是通過自己的物件實現的,程式、執行緒和虛擬記憶體都被稱為"物件"。和其他架構不同, Mach 的物件間不能直接呼叫,只能通過訊息傳遞的方式實現物件間的通訊。"訊息"是 Mach 中最基礎的概念,訊息在兩個埠 (port) 之間傳遞,這就是 Mach 的 IPC (程式間通訊) 的核心。

Mach 的訊息定義是在 <mach/message.h> 標頭檔案的,很簡單:

一條 Mach 訊息實際上就是一個二進位制資料包 (BLOB),其頭部定義了當前埠 local_port 和目標埠 remote_port,
傳送和接受訊息是通過同一個 API 進行的,其 option 標記了訊息傳遞的方向:

為了實現訊息的傳送和接收,mach_msg() 函式實際上是呼叫了一個 Mach 陷阱 (trap),即函式mach_msg_trap(),陷阱這個概念在 Mach 中等同於系統呼叫。當你在使用者態呼叫 mach_msg_trap() 時會觸發陷阱機制,切換到核心態;核心態中核心實現的 mach_msg() 函式會完成實際的工作,如下圖:
RunLoop_5

這些概念可以參考維基百科: System_callTrap_(computing)

RunLoop 的核心就是一個 mach_msg() (見上面程式碼的第7步),RunLoop 呼叫這個函式去接收訊息,如果沒有別人傳送 port 訊息過來,核心會將執行緒置於等待狀態。例如你在模擬器裡跑起一個 iOS 的 App,然後在 App 靜止時點選暫停,你會看到主執行緒呼叫棧是停留在 mach_msg_trap() 這個地方。

關於具體的如何利用 mach port 傳送資訊,可以看看 NSHipster 這一篇文章,或者這裡的中文翻譯 。

關於Mach的歷史可以看看這篇很有趣的文章:Mac OS X 背後的故事(三)Mach 之父 Avie Tevanian

蘋果用 RunLoop 實現的功能

首先我們可以看一下 App 啟動後 RunLoop 的狀態:

可以看到,系統預設註冊了5個Mode:
1. kCFRunLoopDefaultMode: App的預設 Mode,通常主執行緒是在這個 Mode 下執行的。
2. UITrackingRunLoopMode: 介面跟蹤 Mode,用於 ScrollView 追蹤觸控滑動,保證介面滑動時不受其他 Mode 影響。
3. UIInitializationRunLoopMode: 在剛啟動 App 時第進入的第一個 Mode,啟動完成後就不再使用。
4: GSEventReceiveRunLoopMode: 接受系統事件的內部 Mode,通常用不到。
5: kCFRunLoopCommonModes: 這是一個佔位的 Mode,沒有實際作用。

你可以在這裡看到更多的蘋果內部的 Mode,但那些 Mode 在開發中就很難遇到了。

當 RunLoop 進行回撥時,一般都是通過一個很長的函式呼叫出去 (call out), 當你在你的程式碼中下斷點除錯時,通常能在呼叫棧上看到這些函式。下面是這幾個函式的整理版本,如果你在呼叫棧中看到這些長函式名,在這裡查詢一下就能定位到具體的呼叫地點了:

AutoreleasePool

App啟動後,蘋果在主執行緒 RunLoop 裡註冊了兩個 Observer,其回撥都是 _wrapRunLoopWithAutoreleasePoolHandler()。

第一個 Observer 監視的事件是 Entry(即將進入Loop),其回撥內會呼叫 _objc_autoreleasePoolPush() 建立自動釋放池。其 order 是-2147483647,優先順序最高,保證建立釋放池發生在其他所有回撥之前。

第二個 Observer 監視了兩個事件: BeforeWaiting(準備進入休眠) 時呼叫_objc_autoreleasePoolPop() 和 _objc_autoreleasePoolPush() 釋放舊的池並建立新池;Exit(即將退出Loop) 時呼叫 _objc_autoreleasePoolPop() 來釋放自動釋放池。這個 Observer 的 order 是 2147483647,優先順序最低,保證其釋放池子發生在其他所有回撥之後。

在主執行緒執行的程式碼,通常是寫在諸如事件回撥、Timer回撥內的。這些回撥會被 RunLoop 建立好的 AutoreleasePool 環繞著,所以不會出現記憶體洩漏,開發者也不必顯示建立 Pool 了。

事件響應

蘋果註冊了一個 Source1 (基於 mach port 的) 用來接收系統事件,其回撥函式為 __IOHIDEventSystemClientQueueCallback()。

當一個硬體事件(觸控/鎖屏/搖晃等)發生後,首先由 IOKit.framework 生成一個 IOHIDEvent 事件並由 SpringBoard 接收。這個過程的詳細情況可以參考這裡。SpringBoard 只接收按鍵(鎖屏/靜音等),觸控,加速,接近感測器等幾種 Event,隨後用 mach port 轉發給需要的App程式。隨後蘋果註冊的那個 Source1 就會觸發回撥,並呼叫 _UIApplicationHandleEventQueue() 進行應用內部的分發。

_UIApplicationHandleEventQueue() 會把 IOHIDEvent 處理幷包裝成 UIEvent 進行處理或分發,其中包括識別 UIGesture/處理螢幕旋轉/傳送給 UIWindow 等。通常事件比如 UIButton 點選、touchesBegin/Move/End/Cancel 事件都是在這個回撥中完成的。

手勢識別

當上面的 _UIApplicationHandleEventQueue() 識別了一個手勢時,其首先會呼叫 Cancel 將當前的 touchesBegin/Move/End 系列回撥打斷。隨後系統將對應的 UIGestureRecognizer 標記為待處理。

蘋果註冊了一個 Observer 監測 BeforeWaiting (Loop即將進入休眠) 事件,這個Observer的回撥函式是 _UIGestureRecognizerUpdateObserver(),其內部會獲取所有剛被標記為待處理的 GestureRecognizer,並執行GestureRecognizer的回撥。

當有 UIGestureRecognizer 的變化(建立/銷燬/狀態改變)時,這個回撥都會進行相應處理。

介面更新

當在操作 UI 時,比如改變了 Frame、更新了 UIView/CALayer 的層次時,或者手動呼叫了 UIView/CALayer 的 setNeedsLayout/setNeedsDisplay方法後,這個 UIView/CALayer 就被標記為待處理,並被提交到一個全域性的容器去。

蘋果註冊了一個 Observer 監聽 BeforeWaiting(即將進入休眠) 和 Exit (即將退出Loop) 事件,回撥去執行一個很長的函式:
_ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv()。這個函式裡會遍歷所有待處理的 UIView/CAlayer 以執行實際的繪製和調整,並更新 UI 介面。

這個函式內部的呼叫棧大概是這樣的:

定時器

NSTimer 其實就是 CFRunLoopTimerRef,他們之間是 toll-free bridged 的。一個 NSTimer 註冊到 RunLoop 後,RunLoop 會為其重複的時間點註冊好事件。例如 10:00, 10:10, 10:20 這幾個時間點。RunLoop為了節省資源,並不會在非常準確的時間點回撥這個Timer。Timer 有個屬性叫做 Tolerance (寬容度),標示了當時間點到後,容許有多少最大誤差。

如果某個時間點被錯過了,例如執行了一個很長的任務,則那個時間點的回撥也會跳過去,不會延後執行。就比如等公交,如果 10:10 時我忙著玩手機錯過了那個點的公交,那我只能等 10:20 這一趟了。

CADisplayLink 是一個和螢幕重新整理率一致的定時器(但實際實現原理更復雜,和 NSTimer 並不一樣,其內部實際是操作了一個 Source)。如果在兩次螢幕重新整理之間執行了一個長任務,那其中就會有一幀被跳過去(和 NSTimer 相似),造成介面卡頓的感覺。在快速滑動TableView時,即使一幀的卡頓也會讓使用者有所察覺。Facebook 開源的 AsyncDisplayLink 就是為了解決介面卡頓的問題,其內部也用到了 RunLoop,這個稍後我會再單獨寫一頁部落格來分析。

PerformSelecter

當呼叫 NSObject 的 performSelecter:afterDelay: 後,實際上其內部會建立一個 Timer 並新增到當前執行緒的 RunLoop 中。所以如果當前執行緒沒有 RunLoop,則這個方法會失效。

當呼叫 performSelector:onThread: 時,實際上其會建立一個 Timer 加到對應的執行緒去,同樣的,如果對應執行緒沒有 RunLoop 該方法也會失效。

關於GCD

實際上 RunLoop 底層也會用到 GCD 的東西,比如 RunLoop 是用 dispatch_source_t 實現的 Timer(評論中有人提醒,NSTimer 是用了 XNU 核心的 mk_timer,我也仔細除錯了一下,發現 NSTimer 確實是由 mk_timer 驅動,而非 GCD 驅動的)。但同時 GCD 提供的某些介面也用到了 RunLoop, 例如 dispatch_async()。

當呼叫 dispatch_async(dispatch_get_main_queue(), block) 時,libDispatch 會向主執行緒的 RunLoop 傳送訊息,RunLoop會被喚醒,並從訊息中取得這個 block,並在回撥 __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__() 裡執行這個 block。但這個邏輯僅限於 dispatch 到主執行緒,dispatch 到其他執行緒仍然是由 libDispatch 處理的。

關於網路請求

iOS 中,關於網路請求的介面自下至上有如下幾層:

• CFSocket 是最底層的介面,只負責 socket 通訊。
• CFNetwork 是基於 CFSocket 等介面的上層封裝,ASIHttpRequest 工作於這一層。
• NSURLConnection 是基於 CFNetwork 的更高層的封裝,提供物件導向的介面,AFNetworking 工作於這一層。
• NSURLSession 是 iOS7 中新增的介面,表面上是和 NSURLConnection 並列的,但底層仍然用到了 NSURLConnection 的部分功能 (比如 com.apple.NSURLConnectionLoader 執行緒),AFNetworking2 和 Alamofire 工作於這一層。

下面主要介紹下 NSURLConnection 的工作過程。

通常使用 NSURLConnection 時,你會傳入一個 Delegate,當呼叫了 [connection start] 後,這個 Delegate 就會不停收到事件回撥。實際上,start 這個函式的內部會會獲取 CurrentRunLoop,然後在其中的 DefaultMode 新增了4個 Source0 (即需要手動觸發的Source)。CFMultiplexerSource 是負責各種 Delegate 回撥的,CFHTTPCookieStorage 是處理各種 Cookie 的。

當開始網路傳輸時,我們可以看到 NSURLConnection 建立了兩個新執行緒:com.apple.NSURLConnectionLoader 和 com.apple.CFSocket.private。其中 CFSocket 執行緒是處理底層 socket 連線的。NSURLConnectionLoader 這個執行緒內部會使用 RunLoop 來接收底層 socket 的事件,並通過之前新增的 Source0 通知到上層的 Delegate。

RunLoop_network

NSURLConnectionLoader 中的 RunLoop 通過一些基於 mach port 的 Source 接收來自底層 CFSocket 的通知。當收到通知後,其會在合適的時機向 CFMultiplexerSource 等 Source0 傳送通知,同時喚醒 Delegate 執行緒的 RunLoop 來讓其處理這些通知。CFMultiplexerSource 會在 Delegate 執行緒的 RunLoop 對 Delegate 執行實際的回撥。

RunLoop 的實際應用舉例

AFNetworking

AFURLConnectionOperation 這個類是基於 NSURLConnection 構建的,其希望能在後臺執行緒接收 Delegate 回撥。為此 AFNetworking 單獨建立了一個執行緒,並在這個執行緒中啟動了一個 RunLoop:

RunLoop 啟動前內部必須要有至少一個 Timer/Observer/Source,所以 AFNetworking 在 [runLoop run] 之前先建立了一個新的 NSMachPort 新增進去了。通常情況下,呼叫者需要持有這個 NSMachPort (mach_port) 並在外部執行緒通過這個 port 傳送訊息到 loop 內;但此處新增 port 只是為了讓 RunLoop 不至於退出,並沒有用於實際的傳送訊息。

當需要這個後臺執行緒執行任務時,AFNetworking 通過呼叫 [NSObject performSelector:onThread:..] 將這個任務扔到了後臺執行緒的 RunLoop 中。

AsyncDisplayKit

AsyncDisplayKit 是 Facebook 推出的用於保持介面流暢性的框架,其原理大致如下:

UI 執行緒中一旦出現繁重的任務就會導致介面卡頓,這類任務通常分為3類:排版,繪製,UI物件操作。

排版通常包括計算檢視大小、計算文字高度、重新計運算元式圖的排版等操作。
繪製一般有文字繪製 (例如 CoreText)、圖片繪製 (例如預先解壓)、元素繪製 (Quartz)等操作。
UI物件操作通常包括 UIView/CALayer 等 UI 物件的建立、設定屬性和銷燬。

其中前兩類操作可以通過各種方法扔到後臺執行緒執行,而最後一類操作只能在主執行緒完成,並且有時後面的操作需要依賴前面操作的結果 (例如TextView建立時可能需要提前計算出文字的大小)。ASDK 所做的,就是儘量將能放入後臺的任務放入後臺,不能的則儘量推遲 (例如檢視的建立、屬性的調整)。

為此,ASDK 建立了一個名為 ASDisplayNode 的物件,並在內部封裝了 UIView/CALayer,它具有和 UIView/CALayer 相似的屬性,例如 frame、backgroundColor等。所有這些屬性都可以在後臺執行緒更改,開發者可以只通過 Node 來操作其內部的 UIView/CALayer,這樣就可以將排版和繪製放入了後臺執行緒。但是無論怎麼操作,這些屬性總需要在某個時刻同步到主執行緒的 UIView/CALayer 去。

ASDK 仿照 QuartzCore/UIKit 框架的模式,實現了一套類似的介面更新的機制:即在主執行緒的 RunLoop 中新增一個 Observer,監聽了 kCFRunLoopBeforeWaiting 和 kCFRunLoopExit 事件,在收到回撥時,遍歷所有之前放入佇列的待處理的任務,然後一一執行。
具體的程式碼可以看這裡:_ASAsyncTransactionGroup

最後

好長時間沒寫部落格了喵~前幾天給部落格搬了個家,從越來越慢的 AWS 遷到了 Linode

http://blog.ibireme.com/2015/05/18/runloop/是原文地址,感謝分享