UVA 11383 - Golden Tiger Claw【二分圖km原理】

MissZhou要努力發表於2016-04-29

題意:給定nxn的矩陣值,為每行每列找一個row(i) col(i)使得w(i,j)<=row(i)+col(j) 且要求row(i) 從來col(j)總和最小

做法:最開始死活是想不到這貨是二分圖有毛線關係啊QAQ, 而且,我還以為row col都是已知的數當中找出來的==

引用:
KM演算法是通過給每個頂點一個標號(叫做頂標)來把求最大權匹配的問題轉化為求完備匹配的問題的。設頂點Xi的頂標為A[i],頂點Yi的頂標為B [i],頂點Xi與Yj之間的邊權為w[i,j]。在演算法執行過程中的任一時刻,對於任一條邊(i,j),A[i]+B[j]>=w[i,j]始終 成立。KM演算法的正確性基於以下定理: 
  若由二分圖中所有滿足A[i]+B[j]=w[i,j]的邊(i,j)構成的子圖(稱做相等子圖)有完備匹配,那麼這個完備匹配就是二分圖的最大權匹配。 
  這個定理是顯然的。因為對於二分圖的任意一個匹配,如果它包含於相等子圖,那麼它的邊權和等於所有頂點的頂標和;如果它有的邊不包含於相等子圖,那麼它的邊權和小於所有頂點的頂標和。所以相等子圖的完備匹配一定是二分圖的最大權匹配。 
  初始時為了使A[i]+B[j]>=w[i,j]恆成立,令A[i]為所有與頂點Xi關聯的邊的最大權,B[j]=0。如果當前的相等子圖沒有完備匹配,就按下面的方法修改頂標以使擴大相等子圖,直到相等子圖具有完備匹配為止。 
  我們求當前相等子圖的完備匹配失敗了,是因為對於某個X頂點,我們找不到一條從它出發的交錯路。這時我們獲得了一棵交錯樹,它的葉子結點全部是X頂點。現在我們把交錯樹中X頂點的頂標全都減小某個值d,Y頂點的頂標全都增加同一個值d,那麼我們會發現: 
兩端都在交錯樹中的邊(i,j),A[i]+B[j]的值沒有變化。也就是說,它原來屬於相等子圖,現在仍屬於相等子圖。 
兩端都不在交錯樹中的邊(i,j),A[i]和B[j]都沒有變化。也就是說,它原來屬於(或不屬於)相等子圖,現在仍屬於(或不屬於)相等子圖。 
X端不在交錯樹中,Y端在交錯樹中的邊(i,j),它的A[i]+B[j]的值有所增大。它原來不屬於相等子圖,現在仍不屬於相等子圖。 
X端在交錯樹中,Y端不在交錯樹中的邊(i,j),它的A[i]+B[j]的值有所減小。也就說,它原來不屬於相等子圖,現在可能進入了相等子圖,因而使相等子圖得到了擴大。 
  現在的問題就是求d值了。為了使A[i]+B[j]>=w[i,j]始終成立,且至少有一條邊進入相等子圖,d應該等於min{A[i]+B[j]-w[i,j]|Xi在交錯樹中,Yi不在交錯樹中}。 
  以上就是KM演算法的基本思路。但是樸素的實現方法,時間複雜度為O(n4)——需要找O(n)次增廣路,每次增廣最多需要修改O(n)次頂 標,每次修改頂標時由於要列舉邊來求d值,複雜度為O(n2)。實際上KM演算法的複雜度是可以做到O(n3)的。我們給每個Y頂點一個“鬆弛量”函式 slack,每次開始找增廣路時初始化為無窮大。在尋找增廣路的過程中,檢查邊(i,j)時,如果它不在相等子圖中,則讓slack[j]變成原值與A [i]+B[j]-w[i,j]的較小值。這樣,在修改頂標時,取所有不在交錯樹中的Y頂點的slack值中的最小值作為d值即可。但還要注意一點:修改 頂標後,要把所有的slack值都減去d。

說了一堆廢話,總而言之就是要求對上了== 所以把數字帶進去得出的就是最終結果

#include <stdio.h>
#include <string.h>
#define M 555
#define inf 0x3f3f3f3f
using namespace std;
int abs(int x)
{
    return x>0?x:-x;
}
int n,m,nx,ny;
int link[M],lx[M],ly[M],slack[M];///lx,ly為頂標,nx,ny分別為x點集y點集的個數
int visx[M],visy[M],w[M][M];

int DFS(int x)
{
    visx[x] = 1;
    for (int y = 1; y <= ny; y ++)
    {
        if (visy[y]) continue;
        int t = lx[x] + ly[y] - w[x][y];
        if (t == 0)
        {
            visy[y] = 1;
            if (link[y] == -1||DFS(link[y]))
            {
                link[y] = x;
                return 1;
            }
        }
        else if (slack[y] > t)  ///不在相等子圖中slack 取最小的
            slack[y] = t;
    }
    return 0;
}
int KM()
{
    int i,j;
    memset (link,-1,sizeof(link));
    memset (ly,0,sizeof(ly));
    for (i = 1; i <= nx; i ++)          ///lx初始化為與它關聯邊中最大的
        for (j = 1,lx[i] = -inf; j <= ny; j ++)
            if (w[i][j] > lx[i])
                lx[i] = w[i][j];

    for (int x = 1; x <= nx; x ++)
    {
        for (i = 1; i <= ny; i ++)
            slack[i] = inf;
        while (1)
        {
            memset (visx,0,sizeof(visx));
            memset (visy,0,sizeof(visy));
            if (DFS(x))     ///若成功(找到了增廣軌),則該點增廣完成,進入下一個點的增廣
                break;  ///若失敗(沒有找到增廣軌),則需要改變一些點的標號,使得圖中可行邊的數量增加。
            ///方法為:將所有在增廣軌中(就是在增廣過程中遍歷到)的X方點的標號全部減去一個常數d,
            ///所有在增廣軌中的Y方點的標號全部加上一個常數d
            int d = inf;
            for (i = 1; i <= ny; i ++)
                if (!visy[i]&&d > slack[i])
                    d = slack[i];
            for (i = 1; i <= nx; i ++)
                if (visx[i])
                    lx[i] -= d;
            for (i = 1; i <= ny; i ++) ///修改頂標後,要把所有不在交錯樹中的Y頂點的slack值都減去d
                if (visy[i])
                    ly[i] += d;
                else
                    slack[i] -= d;
        }
    }
    for(int i=1;i<nx;i++) printf("%d ",lx[i]);printf("%d\n",lx[nx]);
    for(int i=1;i<ny;i++) printf("%d ",ly[i]);printf("%d\n",ly[ny]);
    int res = 0;
    for (i = 1; i <= ny; i ++)
        if (link[i] > -1)
            res += w[link[i]][i];
    return res;
}
int main()
{
    //freopen("cin.txt","r",stdin);
    int n;
    while(~scanf("%d",&n))
    {
        nx=ny=n;
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            scanf("%d",&w[i][j]);
           // printf("%d ",w[i][j]);
        }
        printf("%d\n",KM());
    }
    return 0;
}



相關文章