線性代數常用基本知識整理

xialeizhou發表於2018-07-13

1. 行列式

1.1 二階行列式



1.2 三階行列式


1.3 排列的逆序數



1.4 n階行列式





2. 行列式的性質


性質1  行列式與它的轉置行列式相等。
性質2  互換行列式的兩行(列),行列式變號。
性質3  行列式的某一行(列)中所有的元素都乘以同一個倍數K,等於用數K乘以此行列式。
性質4  行列式中如果有兩行(列)元素成比例,則此行列式為零。


行列式中行與列具有同等的地位, 凡是對行成立的性質對列也同樣成立.

計算行列式常用方法:(1)利用定義;(2)利用性質把行列式化為上三角形行列式,從而算得行列式的值.

3. 求解方程組

3.1 克拉默法則


定理4   如果線性方程組的係數行列式不等於零,則該線性方程組一定有解,而且解是唯一的 .

定理4′ 如果線性方程組無解或有兩個不同的解,則它的係數行列式必為零.

4. 矩陣


4.1 特殊矩陣



4.2 矩陣與線性變換


4.3 矩陣的運算

4.3.1 矩陣的加法




4.3.2 數與矩陣相乘




4.3.3 矩陣與矩陣相乘

  



4.3.4 矩陣的轉置




4.3.5 方陣的行列式





5. 範數 

     範數,是具有“長度”概念的函式。

5.1 向量範數        

其中2-範數就是通常意義下的距離。






5.2 矩陣範數

        

        




     矩陣範數反映了線性對映把一個向量對映為另一個向量,向量的“長度”縮放的比例。

     範數理論是矩陣分析的基礎,度量向量之間的距離、求極限等都會用到範數,範數還在機器學習、模式識別領域有著廣泛的應用。

     理論上講範數的概念屬於賦範線性空間,最重要的作用是誘匯出距離,進而還可以研究收斂性.

     一個集合(向量),通過一種對映關係(矩陣),得到另外一個集合(另外一個向量),則:

     1) 向量的範數:就是表示這個原有集合的大小。
     2) 矩陣的範數:就是表示這個變化過程的大小的一個度量。

     計算機領域:用的比較多的就是迭代過程中收斂性質的判斷,一般迭代前後步驟的差值的範數表示其大小,常用的是二範數,差值越小表示越逼近實際值,可以認為達到要求的精度,收斂。

6. 向量的內積


相關文章