機器學習值得一看的優質論文(部分)
Hidden Markov Models
Rabiner, L. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. (Proceedings of the IEEE 1989)
Freitag and McCallum, 2000, Information Extraction with HMM Structures Learned by Stochastic Optimization, (AAAI'00)
Maximum Entropy
Adwait R. A Maximum Entropy Model for POS tagging, (1994)
A. Berger, S. Della Pietra, and V. Della Pietra. A maximum entropy approach to natural language processing. (CL'1996)
A. Ratnaparkhi. Maximum Entropy Models for Natural Language Ambiguity Resolution. PhD thesis, University of Pennsylvania, 1998.
Hai Leong Chieu, 2002. A Maximum Entropy Approach to Information Extraction from Semi-Structured and Free Text, (AAAI'02)
MEMM
McCallum et al., 2000, Maximum Entropy Markov Models for Information Extraction and Segmentation, (ICML'00)
Punyakanok & Roth, 2001, The Use of Classifiers in Sequential Inference. (NIPS'01)
Perceptron
McCallum, 2002 Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms (EMNLP'02)
Y. Li, K. Bontcheva, and H. Cunningham. Using Uneven-Margins SVM and Perceptron for Information Extraction. (CoNLL'05)
SVM
Z. Zhang. Weakly-Supervised Relation Classification for Information Extraction (CIKM'04)
H. Han et al. Automatic Document Metadata Extraction using Support Vector Machines (JCDL'03)
Aidan Finn and Nicholas Kushmerick. Multi-level Boundary Classification for Information Extraction (ECML'2004)
Yves Grandvalet, Johnny Marià , A Probabilistic Interpretation of SVMs with an Application to Unbalanced Classification. (NIPS' 05)
CRFs
J. Lafferty et al. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. (ICML'01)
Hanna Wallach. Efficient Training of Conditional Random Fields. MS Thesis 2002
Taskar, B., Abbeel, P., & Koller, D. Discriminative probabilistic models for relational data. (UAI'02)
Fei Sha and Fernando Pereira. Shallow Parsing with Conditional Random Fields. (HLT/NAACL 2003)
B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. (NIPS'2003)
S. Sarawagi and W. W. Cohen. Semi-Markov Conditional Random Fields for Information Extraction (NIPS'04)
Brian Roark et al. Discriminative Language Modeling with Conditional Random Fields and the Perceptron Algorithm (ACL'2004)
H. M. Wallach. Conditional Random Fields: An Introduction (2004)
Kristjansson, T.; Culotta, A.; Viola, P.; and McCallum, A. Interactive Information Extraction with Constrained Conditional Random Fields. (AAAI'2004)
Sunita Sarawagi and William W. Cohen. Semi-Markov Conditional Random Fields for Information Extraction. (NIPS'2004)
John Lafferty, Xiaojin Zhu, and Yan Liu. Kernel Conditional Random Fields: Representation and Clique Selection. (ICML'2004)
POS Tagging
J. Kupiec. Robust part-of-speech tagging using a hidden Markov model. (Computer Speech and Language'1992)
Hinrich Schutze and Yoram Singer. Part-of-Speech Tagging using a Variable Memory Markov Model. (ACL‘1994)
Adwait Ratnaparkhi. A maximum entropy model for part-of-speech tagging. (EMNLP'1996)
Noun Phrase Extraction
E. Xun, C. Huang, and M. Zhou. A Unified Statistical Model for the Identification of English baseNP. (ACL'00)
Named Entity Recognition
Andrew McCallum and Wei Li. Early Results for Named Entity Recognition with Conditional Random Fields, Feature Induction and Web-enhanced Lexicons. (CoNLL'2003).
Moshe Fresko et al. A Hybrid Approach to NER by MEMM and Manual Rules, (CIKM'2005).
Chinese Word Segmentation
Fuchun Peng et al. Chinese Segmentation and New Word Detection using Conditional Random Fields, COLING 2004.
Document Data Extraction
Andrew McCallum, Dayne Freitag, and Fernando Pereira. Maximum entropy Markov models for information extraction and segmentation. (ICML'2000).
David Pinto, Andrew McCallum, etc. Table Extraction Using Conditional Random Fields. SIGIR 2003.
Fuchun Peng and Andrew McCallum. Accurate Information Extraction from Research Papers using Conditional Random Fields. (HLT-NAACL'2004)
V. Carvalho, W. Cohen. Learning to Extract Signature and Reply Lines from Email. In Proc. of Conference on Email and Spam (CEAS'04) 2004.
Jie Tang, Hang Li, Yunbo Cao, and Zhaohui Tang, Email Data Cleaning, SIGKDD'05
P. Viola, and M. Narasimhan. Learning to Extract Information from Semi-structured Text using a Discriminative Context Free Grammar. (SIGIR'05)
Yunhua Hu, Hang Li, Yunbo Cao, Dmitriy Meyerzon, Li Teng, and Qinghua Zheng, Automatic Extraction of Titles from General Documents using Machine Learning, Information Processing and Management, 2006
Web Data Extraction
Ariadna Quattoni, Michael Collins, and Trevor Darrell. Conditional Random Fields for Object Recognition. (NIPS'2004)
Yunhua Hu, Guomao Xin, Ruihua Song, Guoping Hu, Shuming Shi, Yunbo Cao, and Hang Li, Title Extraction from Bodies of HTML Documents and Its Application to Web Page Retrieval, (SIGIR'05)
Jun Zhu et al. Mutual Enhancement of Record Detection and Attribute Labeling in Web Data Extraction. (SIGKDD 2006)
Event Extraction
Kiyotaka Uchimoto, Qing Ma, Masaki Murata, Hiromi Ozaku, and Hitoshi Isahara. Named Entity Extraction Based on A Maximum Entropy Model and Transformation Rules. (ACL'2000)
GuoDong Zhou and Jian Su. Named Entity Recognition using an HMM-based Chunk Tagger (ACL'2002)
Hai Leong Chieu and Hwee Tou Ng. Named Entity Recognition: A Maximum Entropy Approach Using Global Information. (COLING'2002)
Wei Li and Andrew McCallum. Rapid development of Hindi named entity recognition using conditional random fields and feature induction. ACM Trans. Asian Lang. Inf. Process. 2003
Question Answering
Rohini K. Srihari and Wei Li. Information Extraction Supported Question Answering. (TREC'1999)
Eric Nyberg et al. The JAVELIN Question-Answering System at TREC 2003: A Multi-Strategh Approach with Dynamic Planning. (TREC'2003)
Natural Language Parsing
Leonid Peshkin and Avi Pfeffer. Bayesian Information Extraction Network. (IJCAI'2003)
Joon-Ho Lim et al. Semantic Role Labeling using Maximum Entropy Model. (CoNLL'2004)
Trevor Cohn et al. Semantic Role Labeling with Tree Conditional Random Fields. (CoNLL'2005)
Kristina toutanova, Aria Haghighi, and Christopher D. Manning. Joint Learning Improves Semantic Role Labeling. (ACL'2005)
Shallow parsing
Ferran Pla, Antonio Molina, and Natividad Prieto. Improving text chunking by means of lexical-contextual information in statistical language models. (CoNLL'2000)
GuoDong Zhou, Jian Su, and TongGuan Tey. Hybrid text chunking. (CoNLL'2000)
Fei Sha and Fernando Pereira. Shallow Parsing with Conditional Random Fields. (HLT-NAACL'2003)
相關文章
- 機器學習推薦的論文和文章機器學習
- 機器學習金融預測領域2023部分綜述論文閱讀記錄機器學習
- 微博收藏(機器學習課程與論文)(三)機器學習
- CVPR2017部分論文簡介
- 第一部分機器學習(一):導論機器學習
- 資料到文字生成的近期優質論文,我們為你挑選了這六篇
- 當博弈論遇上機器學習:一文讀懂相關理論機器學習
- 文字識別——檢測部分 CTPN論文翻譯
- 如何利用機器學習甄別淘寶優質店鋪機器學習
- 軟體質量的一級屬性科技論文(2)
- NIPS 2016現場:谷歌釋出 28 篇機器學習論文(附全論文)谷歌機器學習
- 解讀NeurIPS2019最好的機器學習論文機器學習
- 總結機器學習優質學習文章Top50!機器學習
- 軟體論文之論軟體質量保證及其應用
- 嘀~ 您有一份優質論文大禮包
- Heterogeneous Domain Adaptation 異質域適應論文合集AIAPT
- 軟體質量一級屬性科技論文(1)
- 【論文】軍事理論課程論文
- 一文掌握5種常用的機器學習模型及其優缺點機器學習模型
- 機器學習緒論機器學習
- 一文讀懂統計學與機器學習的本質區別(附案例)機器學習
- KISTI:研究顯示中國科學論文的質量水平超過美國
- 論文
- 絕對值得一看的防毒軟體和防火牆評論防毒防火牆
- 17篇論文,詳解圖的機器學習趨勢 | NeurIPS 2019機器學習
- NeurIPS 2019 | 17篇論文,詳解圖的機器學習趨勢機器學習
- 有關軟體質量一級屬性科技論文(3)
- 66 個機器學習硬核資源,書籍、課程、論文一應俱全!機器學習
- SysML 2019論文解讀:推理優化優化
- 本科畢業論文評語-優秀,良好,中等,及格
- 良心GitHub專案:各種機器學習任務的頂級結果(論文)彙總Github機器學習
- 論壇預告|“智啟文創,激發無限新質生產力” ——“AI+文創”發展論壇前瞻AI
- 一個網站拿下機器學習優質資源!搜尋效率提高 50%網站機器學習
- 趕論文
- 三高Mysql - Mysql索引和查詢優化(偏理論部分)MySql索引優化
- 科技論文的檢索
- 近期有哪些值得讀的QA論文?| 專題論文解讀
- 緒論 初識機器學習機器學習