#! usr/bin/env python
# coding:utf-8
"""
__author__ = "LCG22"
__date__ = "2016-12-5"
"""
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets
iris = datasets.load_iris()
X = iris.data[:, :2]
y = iris.target
h = 0.02
C = 1.0
svc = svm.SVC(kernel="linear", C=C).fit(X, y)
rbf_svc = svm.SVC(kernel="rbf", gamma=0.7, C=C).fit(X, y)
poly_svc = svm.SVC(kernel="poly", degree=3, C=C).fit(X, y)
lin_svc = svm.LinearSVC(C=C).fit(X, y)
X_min, X_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(X_min, X_max, h),
np.arange(y_min, y_max, h))
titles = ['SVC with linear kernel',
'LinearSVC(linear kernel)',
'SVC with RBF kernel',
'SVC with polynomial(degree 3) kernel']
for i, clf in enumerate((svc, lin_svc, rbf_svc, poly_svc)):
plt.subplot(2, 2, i+1)
plt.subplots_adjust(wspace=0.4, hspace=0.4)
test_x = np.c_[xx.ravel(), yy.ravel()]
Z = clf.predict(test_x)
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.coolwarm, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.coolwarm)
plt.xlabel("Sepal length")
plt.ylabel("Sepal width")
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
plt.title(titles[i])
plt.show()