一文弄懂神經網路中的反向傳播法——BackPropagation

Charlotte77發表於2016-06-30

  最近在看深度學習的東西,一開始看的吳恩達的UFLDL教程,有中文版就直接看了,後來發現有些地方總是不是很明確,又去看英文版,然後又找了些資料看,才發現,中文版的譯者在翻譯的時候會對省略的公式推導過程進行補充,但是補充的又是錯的,難怪覺得有問題。反向傳播法其實是神經網路的基礎了,但是很多人在學的時候總是會遇到一些問題,或者看到大篇的公式覺得好像很難就退縮了,其實不難,就是一個鏈式求導法則反覆用。如果不想看公式,可以直接把數值帶進去,實際的計算一下,體會一下這個過程之後再來推導公式,這樣就會覺得很容易了。

  說到神經網路,大家看到這個圖應該不陌生:

 

  這是典型的三層神經網路的基本構成,Layer L1是輸入層,Layer L2是隱含層,Layer L3是隱含層,我們現在手裡有一堆資料{x1,x2,x3,...,xn},輸出也是一堆資料{y1,y2,y3,...,yn},現在要他們在隱含層做某種變換,讓你把資料灌進去後得到你期望的輸出。如果你希望你的輸出和原始輸入一樣,那麼就是最常見的自編碼模型(Auto-Encoder)。可能有人會問,為什麼要輸入輸出都一樣呢?有什麼用啊?其實應用挺廣的,在影象識別,文字分類等等都會用到,我會專門再寫一篇Auto-Encoder的文章來說明,包括一些變種之類的。如果你的輸出和原始輸入不一樣,那麼就是很常見的人工神經網路了,相當於讓原始資料通過一個對映來得到我們想要的輸出資料,也就是我們今天要講的話題。

  本文直接舉一個例子,帶入數值演示反向傳播法的過程,公式的推導等到下次寫Auto-Encoder的時候再寫,其實也很簡單,感興趣的同學可以自己推導下試試:)(注:本文假設你已經懂得基本的神經網路構成,如果完全不懂,可以參考Poll寫的筆記:[Mechine Learning & Algorithm] 神經網路基礎

  假設,你有這樣一個網路層:

  第一層是輸入層,包含兩個神經元i1,i2,和截距項b1;第二層是隱含層,包含兩個神經元h1,h2和截距項b2,第三層是輸出o1,o2,每條線上標的wi是層與層之間連線的權重,啟用函式我們預設為sigmoid函式。

  現在對他們賦上初值,如下圖:

  其中,輸入資料  i1=0.05,i2=0.10;

     輸出資料 o1=0.01,o2=0.99;

     初始權重  w1=0.15,w2=0.20,w3=0.25,w4=0.30;

           w5=0.40,w6=0.45,w7=0.50,w8=0.55

 

  目標:給出輸入資料i1,i2(0.05和0.10),使輸出儘可能與原始輸出o1,o2(0.01和0.99)接近。

 

  Step 1 前向傳播

  1.輸入層---->隱含層:

  計算神經元h1的輸入加權和:

神經元h1的輸出o1:(此處用到啟用函式為sigmoid函式):

 

 

  同理,可計算出神經元h2的輸出o2:

  

 

  2.隱含層---->輸出層:

  計算輸出層神經元o1和o2的值:

  

 

這樣前向傳播的過程就結束了,我們得到輸出值為[0.75136079 , 0.772928465],與實際值[0.01 , 0.99]相差還很遠,現在我們對誤差進行反向傳播,更新權值,重新計算輸出。

 

Step 2 反向傳播

1.計算總誤差

總誤差:(square error)

但是有兩個輸出,所以分別計算o1和o2的誤差,總誤差為兩者之和:

 

2.隱含層---->輸出層的權值更新:

以權重引數w5為例,如果我們想知道w5對整體誤差產生了多少影響,可以用整體誤差對w5求偏導求出:(鏈式法則)

下面的圖可以更直觀的看清楚誤差是怎樣反向傳播的:

現在我們來分別計算每個式子的值:

計算

計算

(這一步實際上就是對sigmoid函式求導,比較簡單,可以自己推導一下)

 

計算

最後三者相乘:

這樣我們就計算出整體誤差E(total)對w5的偏導值。

回過頭來再看看上面的公式,我們發現:

為了表達方便,用來表示輸出層的誤差:

因此,整體誤差E(total)對w5的偏導公式可以寫成:

如果輸出層誤差計為負的話,也可以寫成:

最後我們來更新w5的值:

(其中,是學習速率,這裡我們取0.5)

同理,可更新w6,w7,w8:

 

3.隱含層---->隱含層的權值更新:

 方法其實與上面說的差不多,但是有個地方需要變一下,在上文計算總誤差對w5的偏導時,是從out(o1)---->net(o1)---->w5,但是在隱含層之間的權值更新時,是out(h1)---->net(h1)---->w1,而out(h1)會接受E(o1)和E(o2)兩個地方傳來的誤差,所以這個地方兩個都要計算。

 

 

計算

先計算

同理,計算出:

          

兩者相加得到總值:

再計算

再計算

最後,三者相乘:

 為了簡化公式,用sigma(h1)表示隱含層單元h1的誤差:

最後,更新w1的權值:

同理,額可更新w2,w3,w4的權值:

 

  這樣誤差反向傳播法就完成了,最後我們再把更新的權值重新計算,不停地迭代,在這個例子中第一次迭代之後,總誤差E(total)由0.298371109下降至0.291027924。迭代10000次後,總誤差為0.000035085,輸出為[0.015912196,0.984065734](原輸入為[0.01,0.99]),證明效果還是不錯的。

 

程式碼(Python):

  1 #coding:utf-8
  2 import random
  3 import math
  4 
  5 #
  6 #   引數解釋:
  7 #   "pd_" :偏導的字首
  8 #   "d_" :導數的字首
  9 #   "w_ho" :隱含層到輸出層的權重係數索引
 10 #   "w_ih" :輸入層到隱含層的權重係數的索引
 11 
 12 class NeuralNetwork:
 13     LEARNING_RATE = 0.5
 14 
 15     def __init__(self, num_inputs, num_hidden, num_outputs, hidden_layer_weights = None, hidden_layer_bias = None, output_layer_weights = None, output_layer_bias = None):
 16         self.num_inputs = num_inputs
 17 
 18         self.hidden_layer = NeuronLayer(num_hidden, hidden_layer_bias)
 19         self.output_layer = NeuronLayer(num_outputs, output_layer_bias)
 20 
 21         self.init_weights_from_inputs_to_hidden_layer_neurons(hidden_layer_weights)
 22         self.init_weights_from_hidden_layer_neurons_to_output_layer_neurons(output_layer_weights)
 23 
 24     def init_weights_from_inputs_to_hidden_layer_neurons(self, hidden_layer_weights):
 25         weight_num = 0
 26         for h in range(len(self.hidden_layer.neurons)):
 27             for i in range(self.num_inputs):
 28                 if not hidden_layer_weights:
 29                     self.hidden_layer.neurons[h].weights.append(random.random())
 30                 else:
 31                     self.hidden_layer.neurons[h].weights.append(hidden_layer_weights[weight_num])
 32                 weight_num += 1
 33 
 34     def init_weights_from_hidden_layer_neurons_to_output_layer_neurons(self, output_layer_weights):
 35         weight_num = 0
 36         for o in range(len(self.output_layer.neurons)):
 37             for h in range(len(self.hidden_layer.neurons)):
 38                 if not output_layer_weights:
 39                     self.output_layer.neurons[o].weights.append(random.random())
 40                 else:
 41                     self.output_layer.neurons[o].weights.append(output_layer_weights[weight_num])
 42                 weight_num += 1
 43 
 44     def inspect(self):
 45         print('------')
 46         print('* Inputs: {}'.format(self.num_inputs))
 47         print('------')
 48         print('Hidden Layer')
 49         self.hidden_layer.inspect()
 50         print('------')
 51         print('* Output Layer')
 52         self.output_layer.inspect()
 53         print('------')
 54 
 55     def feed_forward(self, inputs):
 56         hidden_layer_outputs = self.hidden_layer.feed_forward(inputs)
 57         return self.output_layer.feed_forward(hidden_layer_outputs)
 58 
 59     def train(self, training_inputs, training_outputs):
 60         self.feed_forward(training_inputs)
 61 
 62         # 1. 輸出神經元的值
 63         pd_errors_wrt_output_neuron_total_net_input = [0] * len(self.output_layer.neurons)
 64         for o in range(len(self.output_layer.neurons)):
 65 
 66             # ∂E/∂zⱼ
 67             pd_errors_wrt_output_neuron_total_net_input[o] = self.output_layer.neurons[o].calculate_pd_error_wrt_total_net_input(training_outputs[o])
 68 
 69         # 2. 隱含層神經元的值
 70         pd_errors_wrt_hidden_neuron_total_net_input = [0] * len(self.hidden_layer.neurons)
 71         for h in range(len(self.hidden_layer.neurons)):
 72 
 73             # dE/dyⱼ = Σ ∂E/∂zⱼ * ∂z/∂yⱼ = Σ ∂E/∂zⱼ * wᵢⱼ
 74             d_error_wrt_hidden_neuron_output = 0
 75             for o in range(len(self.output_layer.neurons)):
 76                 d_error_wrt_hidden_neuron_output += pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].weights[h]
 77 
 78             # ∂E/∂zⱼ = dE/dyⱼ * ∂zⱼ/∂
 79             pd_errors_wrt_hidden_neuron_total_net_input[h] = d_error_wrt_hidden_neuron_output * self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_input()
 80 
 81         # 3. 更新輸出層權重係數
 82         for o in range(len(self.output_layer.neurons)):
 83             for w_ho in range(len(self.output_layer.neurons[o].weights)):
 84 
 85                 # ∂Eⱼ/∂wᵢⱼ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢⱼ
 86                 pd_error_wrt_weight = pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].calculate_pd_total_net_input_wrt_weight(w_ho)
 87 
 88                 # Δw = α * ∂Eⱼ/∂wᵢ
 89                 self.output_layer.neurons[o].weights[w_ho] -= self.LEARNING_RATE * pd_error_wrt_weight
 90 
 91         # 4. 更新隱含層的權重係數
 92         for h in range(len(self.hidden_layer.neurons)):
 93             for w_ih in range(len(self.hidden_layer.neurons[h].weights)):
 94 
 95                 # ∂Eⱼ/∂wᵢ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢ
 96                 pd_error_wrt_weight = pd_errors_wrt_hidden_neuron_total_net_input[h] * self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_weight(w_ih)
 97 
 98                 # Δw = α * ∂Eⱼ/∂wᵢ
 99                 self.hidden_layer.neurons[h].weights[w_ih] -= self.LEARNING_RATE * pd_error_wrt_weight
100 
101     def calculate_total_error(self, training_sets):
102         total_error = 0
103         for t in range(len(training_sets)):
104             training_inputs, training_outputs = training_sets[t]
105             self.feed_forward(training_inputs)
106             for o in range(len(training_outputs)):
107                 total_error += self.output_layer.neurons[o].calculate_error(training_outputs[o])
108         return total_error
109 
110 class NeuronLayer:
111     def __init__(self, num_neurons, bias):
112 
113         # 同一層的神經元共享一個截距項b
114         self.bias = bias if bias else random.random()
115 
116         self.neurons = []
117         for i in range(num_neurons):
118             self.neurons.append(Neuron(self.bias))
119 
120     def inspect(self):
121         print('Neurons:', len(self.neurons))
122         for n in range(len(self.neurons)):
123             print(' Neuron', n)
124             for w in range(len(self.neurons[n].weights)):
125                 print('  Weight:', self.neurons[n].weights[w])
126             print('  Bias:', self.bias)
127 
128     def feed_forward(self, inputs):
129         outputs = []
130         for neuron in self.neurons:
131             outputs.append(neuron.calculate_output(inputs))
132         return outputs
133 
134     def get_outputs(self):
135         outputs = []
136         for neuron in self.neurons:
137             outputs.append(neuron.output)
138         return outputs
139 
140 class Neuron:
141     def __init__(self, bias):
142         self.bias = bias
143         self.weights = []
144 
145     def calculate_output(self, inputs):
146         self.inputs = inputs
147         self.output = self.squash(self.calculate_total_net_input())
148         return self.output
149 
150     def calculate_total_net_input(self):
151         total = 0
152         for i in range(len(self.inputs)):
153             total += self.inputs[i] * self.weights[i]
154         return total + self.bias
155 
156     # 啟用函式sigmoid
157     def squash(self, total_net_input):
158         return 1 / (1 + math.exp(-total_net_input))
159 
160 
161     def calculate_pd_error_wrt_total_net_input(self, target_output):
162         return self.calculate_pd_error_wrt_output(target_output) * self.calculate_pd_total_net_input_wrt_input();
163 
164     # 每一個神經元的誤差是由平方差公式計算的
165     def calculate_error(self, target_output):
166         return 0.5 * (target_output - self.output) ** 2
167 
168     
169     def calculate_pd_error_wrt_output(self, target_output):
170         return -(target_output - self.output)
171 
172     
173     def calculate_pd_total_net_input_wrt_input(self):
174         return self.output * (1 - self.output)
175 
176 
177     def calculate_pd_total_net_input_wrt_weight(self, index):
178         return self.inputs[index]
179 
180 
181 # 文中的例子:
182 
183 nn = NeuralNetwork(2, 2, 2, hidden_layer_weights=[0.15, 0.2, 0.25, 0.3], hidden_layer_bias=0.35, output_layer_weights=[0.4, 0.45, 0.5, 0.55], output_layer_bias=0.6)
184 for i in range(10000):
185     nn.train([0.05, 0.1], [0.01, 0.09])
186     print(i, round(nn.calculate_total_error([[[0.05, 0.1], [0.01, 0.09]]]), 9))
187 
188 
189 #另外一個例子,可以把上面的例子註釋掉再執行一下:
190 
191 # training_sets = [
192 #     [[0, 0], [0]],
193 #     [[0, 1], [1]],
194 #     [[1, 0], [1]],
195 #     [[1, 1], [0]]
196 # ]
197 
198 # nn = NeuralNetwork(len(training_sets[0][0]), 5, len(training_sets[0][1]))
199 # for i in range(10000):
200 #     training_inputs, training_outputs = random.choice(training_sets)
201 #     nn.train(training_inputs, training_outputs)
202 #     print(i, nn.calculate_total_error(training_sets))

 

  

  最後寫到這裡就結束了,現在還不會用latex編輯數學公式,本來都直接想寫在草稿紙上然後掃描了傳上來,但是覺得太影響閱讀體驗了。以後會用公式編輯器後再重把公式重新編輯一遍。穩重使用的是sigmoid啟用函式,實際還有幾種不同的啟用函式可以選擇,具體的可以參考文獻[3],最後推薦一個線上演示神經網路變化的網址:http://www.emergentmind.com/neural-network,可以自己填輸入輸出,然後觀看每一次迭代權值的變化,很好玩~如果有錯誤的或者不懂的歡迎留言:)

 

參考文獻:

1.Poll的筆記:[Mechine Learning & Algorithm] 神經網路基礎http://www.cnblogs.com/maybe2030/p/5597716.html#3457159 )

2.Rachel_Zhang:http://blog.csdn.net/abcjennifer/article/details/7758797

3.http://www.cedar.buffalo.edu/%7Esrihari/CSE574/Chap5/Chap5.3-BackProp.pdf

4.https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

 

------------------------------------本部落格所有內容以學習、研究和分享為主,如需轉載,請聯絡本人,標明作者和出處,並且是非商業用途,謝謝!--------------------------------

 

 

相關文章