python_機器學習—sklearn_win_64-3.6安裝&&測試

ucsb發表於2017-05-27

下載網址:http://www.lfd.uci.edu/~gohlke/pythonlibs/

在之前numpy\scipy基礎上,安裝sklearn_win_64-3.6

 pip install D:\python3.6.1\Scripts\scikit_learn-0.18.1-cp36-cp36m-win_amd64.whl

 

 另外,發現之前的numpy與sklearn 不是同一網站下載,故進行了重灌

最後進行測試:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection

from sklearn.linear_model import LinearRegression
from sklearn.isotonic import IsotonicRegression
from sklearn.utils import check_random_state

n = 100
x = np.arange(n)
rs = check_random_state(0)
y = rs.randint(-50, 50, size=(n,)) + 50. * np.log(1 + np.arange(n))
ir = IsotonicRegression()

y_ = ir.fit_transform(x, y)

lr = LinearRegression()
lr.fit(x[:, np.newaxis], y)  # x needs to be 2d for LinearRegression
segments = [[[i, y[i]], [i, y_[i]]] for i in range(n)]
lc = LineCollection(segments, zorder=0)
lc.set_array(np.ones(len(y)))
lc.set_linewidths(0.5 * np.ones(n))

fig = plt.figure()
plt.plot(x, y, 'r.', markersize=12)
plt.plot(x, y_, 'g.-', markersize=12)
plt.plot(x, lr.predict(x[:, np.newaxis]), 'b-')
plt.gca().add_collection(lc)
plt.legend(('Data', 'Isotonic Fit', 'Linear Fit'), loc='lower right')
plt.title('Isotonic regression')
plt.show()

 結果:

 

 

相關文章