同構、隱零點
已知函式\(f(x)=x\ln x+(t-1)x-t\)
(1)當\(t=0\),討論\(f(x)\)的極值
(2)若\(F(x)=f(x)-\dfrac{e^x}{e^t}\)有兩個不同的極值點,求\(t\)的取值範圍
解
(1)\(f(x)=x\ln x-x\),\(f^{\prime}(x)=\ln x\),則得到\(f(x)\)有唯一的極值點,並且是\(x=1\)極小值點
,並且\(f(1)=-1\)
(2)
法一:隱零點處理
\(F(x)=x\ln x+(t-1)x-t-e^{x-t}\),\(F^{\prime}(x)=\ln x+t-e^{x-t}\)
記\(\varphi(x)=\ln x+t-e^{x-t}\),\(\varphi^{\prime}(x)=\dfrac{1}{x}-e^{x-t}\)單調遞增
\(x\to 0,\varphi(x)\to-\infty,x\to+\infty,\varphi(x)\to-\infty\),則有唯一的零點\(x_0\),使得\(\varphi^{\prime}(x_0)=0\)
並且\(x=x_0\)是\(\varphi(x)\)的極大值點
則要使得\(\varphi(x)\)有兩個零點,要有\(\varphi(x_0)>0\)
\(\dfrac{1}{x_0}=e^{x_0-t}\),即\(t=x_0+\ln x_0\)
則\(\varphi(x_0)=\ln x_0+t-e^{x_0-t}=\ln x_0+x_0+\ln x_0-\dfrac{1}{x_0}=2\ln x_0+x_0-\dfrac{1}{x_0}>0\)
因\(2\ln x_0+x_0-\dfrac{1}{x_0}\)單調遞增
則\(x_0>1\)
從而\(t=x_0+\ln x_0>1\)
法二:同構處理
\(F^{\prime}(x)=0\)有\(\ln x+t-e ^{x-t}=0\)
即\(\ln x=e^{x-t}-t\)
即\(\ln x+x=e^{x-t}+x-t\)
即\(e^{\ln x}+\ln x=e^{x-t}+x-t\)
考慮\(\gamma(x)=e^{x}+x\)
即\(\gamma(\ln x)=\gamma(x-t)\)
因\(\gamma(x)\)單調遞增
則\(\ln x=x-t\)
即\(y=\ln x\)與\(y=x-t\)有兩個交點
而\(y=\ln x\)與\(y=x-1\)相切
則要使得有兩個交點
要有\(t>1\)