迴歸正則化方法(Lasso,Ridge和ElasticNet)在高維和資料集變數之間多重共線性情況下執行良好。
數學上,ElasticNet被定義為L1和L2正則化項的凸組合:
通過適當設定α,ElasticNet包含L1和L2正則化作為特殊情況。例如,如果用引數α設定為1來訓練線性迴歸模型,則其等價於Lasso模型。另一方面,如果α被設定為0,則訓練的模型簡化為ridge迴歸模型。
RegParam:lambda>=0
ElasticNetParam:alpha in [0, 1]
匯入包
import org.apache.spark.sql.SparkSession import org.apache.spark.sql.Dataset import org.apache.spark.sql.Row import org.apache.spark.sql.DataFrame import org.apache.spark.sql.Column import org.apache.spark.sql.DataFrameReader import org.apache.spark.rdd.RDD import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder import org.apache.spark.sql.Encoder import org.apache.spark.sql.DataFrameStatFunctions import org.apache.spark.sql.functions._ import org.apache.spark.ml.linalg.Vectors import org.apache.spark.ml.feature.VectorAssembler import org.apache.spark.ml.evaluation.RegressionEvaluator import org.apache.spark.ml.regression.LinearRegression
匯入樣本資料
// Population人口, // Income收入水平, // Illiteracy文盲率, // LifeExp, // Murder謀殺率, // HSGrad, // Frost結霜天數(溫度在冰點以下的平均天數) , // Area州面積 val spark = SparkSession.builder().appName("Spark Linear Regression").config("spark.some.config.option", "some-value").getOrCreate() // For implicit conversions like converting RDDs to DataFrames import spark.implicits._ val dataList: List[(Double, Double, Double, Double, Double, Double, Double, Double)] = List( (3615, 3624, 2.1, 69.05, 15.1, 41.3, 20, 50708), (365, 6315, 1.5, 69.31, 11.3, 66.7, 152, 566432), (2212, 4530, 1.8, 70.55, 7.8, 58.1, 15, 113417), (2110, 3378, 1.9, 70.66, 10.1, 39.9, 65, 51945), (21198, 5114, 1.1, 71.71, 10.3, 62.6, 20, 156361), (2541, 4884, 0.7, 72.06, 6.8, 63.9, 166, 103766), (3100, 5348, 1.1, 72.48, 3.1, 56, 139, 4862), (579, 4809, 0.9, 70.06, 6.2, 54.6, 103, 1982), (8277, 4815, 1.3, 70.66, 10.7, 52.6, 11, 54090), (4931, 4091, 2, 68.54, 13.9, 40.6, 60, 58073), (868, 4963, 1.9, 73.6, 6.2, 61.9, 0, 6425), (813, 4119, 0.6, 71.87, 5.3, 59.5, 126, 82677), (11197, 5107, 0.9, 70.14, 10.3, 52.6, 127, 55748), (5313, 4458, 0.7, 70.88, 7.1, 52.9, 122, 36097), (2861, 4628, 0.5, 72.56, 2.3, 59, 140, 55941), (2280, 4669, 0.6, 72.58, 4.5, 59.9, 114, 81787), (3387, 3712, 1.6, 70.1, 10.6, 38.5, 95, 39650), (3806, 3545, 2.8, 68.76, 13.2, 42.2, 12, 44930), (1058, 3694, 0.7, 70.39, 2.7, 54.7, 161, 30920), (4122, 5299, 0.9, 70.22, 8.5, 52.3, 101, 9891), (5814, 4755, 1.1, 71.83, 3.3, 58.5, 103, 7826), (9111, 4751, 0.9, 70.63, 11.1, 52.8, 125, 56817), (3921, 4675, 0.6, 72.96, 2.3, 57.6, 160, 79289), (2341, 3098, 2.4, 68.09, 12.5, 41, 50, 47296), (4767, 4254, 0.8, 70.69, 9.3, 48.8, 108, 68995), (746, 4347, 0.6, 70.56, 5, 59.2, 155, 145587), (1544, 4508, 0.6, 72.6, 2.9, 59.3, 139, 76483), (590, 5149, 0.5, 69.03, 11.5, 65.2, 188, 109889), (812, 4281, 0.7, 71.23, 3.3, 57.6, 174, 9027), (7333, 5237, 1.1, 70.93, 5.2, 52.5, 115, 7521), (1144, 3601, 2.2, 70.32, 9.7, 55.2, 120, 121412), (18076, 4903, 1.4, 70.55, 10.9, 52.7, 82, 47831), (5441, 3875, 1.8, 69.21, 11.1, 38.5, 80, 48798), (637, 5087, 0.8, 72.78, 1.4, 50.3, 186, 69273), (10735, 4561, 0.8, 70.82, 7.4, 53.2, 124, 40975), (2715, 3983, 1.1, 71.42, 6.4, 51.6, 82, 68782), (2284, 4660, 0.6, 72.13, 4.2, 60, 44, 96184), (11860, 4449, 1, 70.43, 6.1, 50.2, 126, 44966), (931, 4558, 1.3, 71.9, 2.4, 46.4, 127, 1049), (2816, 3635, 2.3, 67.96, 11.6, 37.8, 65, 30225), (681, 4167, 0.5, 72.08, 1.7, 53.3, 172, 75955), (4173, 3821, 1.7, 70.11, 11, 41.8, 70, 41328), (12237, 4188, 2.2, 70.9, 12.2, 47.4, 35, 262134), (1203, 4022, 0.6, 72.9, 4.5, 67.3, 137, 82096), (472, 3907, 0.6, 71.64, 5.5, 57.1, 168, 9267), (4981, 4701, 1.4, 70.08, 9.5, 47.8, 85, 39780), (3559, 4864, 0.6, 71.72, 4.3, 63.5, 32, 66570), (1799, 3617, 1.4, 69.48, 6.7, 41.6, 100, 24070), (4589, 4468, 0.7, 72.48, 3, 54.5, 149, 54464), (376, 4566, 0.6, 70.29, 6.9, 62.9, 173, 97203)) val data = dataList.toDF("Population", "Income", "Illiteracy", "LifeExp", "Murder", "HSGrad", "Frost", "Area")
建立線性迴歸模型
val colArray = Array("Population", "Income", "Illiteracy", "LifeExp", "HSGrad", "Frost", "Area") val assembler = new VectorAssembler().setInputCols(colArray).setOutputCol("features") val vecDF: DataFrame = assembler.transform(data) // 建立模型,預測謀殺率Murder // 設定線性迴歸引數 val lr1 = new LinearRegression() val lr2 = lr1.setFeaturesCol("features").setLabelCol("Murder").setFitIntercept(true) // RegParam:正則化 val lr3 = lr2.setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8) val lr = lr3 // Fit the model val lrModel = lr.fit(vecDF) // 輸出模型全部引數 lrModel.extractParamMap() // Print the coefficients and intercept for linear regression println(s"Coefficients: ${lrModel.coefficients} Intercept: ${lrModel.intercept}") val predictions = lrModel.transform(vecDF) predictions.selectExpr("Murder", "round(prediction,1) as prediction").show // Summarize the model over the training set and print out some metrics val trainingSummary = lrModel.summary println(s"numIterations: ${trainingSummary.totalIterations}") println(s"objectiveHistory: ${trainingSummary.objectiveHistory.toList}") trainingSummary.residuals.show() println(s"RMSE: ${trainingSummary.rootMeanSquaredError}") println(s"r2: ${trainingSummary.r2}")
程式碼執行結果
// 輸出模型全部引數 lrModel.extractParamMap() res15: org.apache.spark.ml.param.ParamMap = { linReg_2ba28140e39a-elasticNetParam: 0.8, linReg_2ba28140e39a-featuresCol: features, linReg_2ba28140e39a-fitIntercept: true, linReg_2ba28140e39a-labelCol: Murder, linReg_2ba28140e39a-maxIter: 10, linReg_2ba28140e39a-predictionCol: prediction, linReg_2ba28140e39a-regParam: 0.3, linReg_2ba28140e39a-solver: auto, linReg_2ba28140e39a-standardization: true, linReg_2ba28140e39a-tol: 1.0E-6 } // Print the coefficients and intercept for linear regression println(s"Coefficients: ${lrModel.coefficients} Intercept: ${lrModel.intercept}") Coefficients: [1.36662199778084E-4,0.0,1.1834384307116244,-1.4580829641757522,0.0,-0.010686434270049252,4.051355050528196E-6] Intercept: 109.589659881471 val predictions = lrModel.transform(vecDF) predictions: org.apache.spark.sql.DataFrame = [Population: double, Income: double ... 8 more fields] predictions.selectExpr("Murder", "round(prediction,1) as prediction").show +------+----------+ |Murder|prediction| +------+----------+ | 15.1| 11.9| | 11.3| 11.0| | 7.8| 9.5| | 10.1| 8.6| | 10.3| 9.6| | 6.8| 4.3| | 3.1| 4.2| | 6.2| 7.5| | 10.7| 9.3| | 13.9| 12.3| | 6.2| 4.7| | 5.3| 4.6| | 10.3| 8.8| | 7.1| 6.6| | 2.3| 3.5| | 4.5| 3.9| | 10.6| 8.9| | 13.2| 13.2| | 2.7| 6.3| | 8.5| 7.8| +------+----------+ only showing top 20 rows // Summarize the model over the training set and print out some metrics val trainingSummary = lrModel.summary trainingSummary: org.apache.spark.ml.regression.LinearRegressionTrainingSummary = org.apache.spark.ml.regression.LinearRegressionTrainingSummary@68a83d76 println(s"numIterations: ${trainingSummary.totalIterations}") numIterations: 11 println(s"objectiveHistory: ${trainingSummary.objectiveHistory.toList}") objectiveHistory: List(0.49000000000000016, 0.3919242806809093, 0.19908078426904946, 0.1901453492751914, 0.17981874256031405, 0.17878173084286247, 0.1787617816935607, 0.17875431854661641, 0.1 7874702637141196, 0.17874512271568685, 0.1787449876896829) trainingSummary.residuals.show() +--------------------+ | residuals| +--------------------+ | 3.2200068116713023| | 0.2745518816306607| | -1.6535887417767414| | 1.485762696757325| | 0.6509766532389172| | 2.457688146554534| | -1.0675250558261182| | -1.2879164685248439| | 1.3672723619868314| | 1.6125000289597242| | 1.532060517905248| | 0.6931301635074645| | 1.5163001982000175| | 0.46227066807431605| | -1.2044058248740273| | 0.6032541157521649| | 1.7201545753635| |-0.01942937427384...| | -3.632947522687547| | 0.7077675962948007| +--------------------+ only showing top 20 rows println(s"RMSE: ${trainingSummary.rootMeanSquaredError}") RMSE: 1.6663615527314546 println(s"r2: ${trainingSummary.r2}") r2: 0.7920794990832152
模型調優,用Train-Validation Split
val colArray = Array("Population", "Income", "Illiteracy", "LifeExp", "HSGrad", "Frost", "Area") val vecDF: DataFrame = new VectorAssembler().setInputCols(colArray).setOutputCol("features").transform(data) val Array(trainingDF, testDF) = vecDF.randomSplit(Array(0.9, 0.1), seed = 12345) // 建立模型,預測謀殺率Murder,設定線性迴歸引數 val lr = new LinearRegression().setFeaturesCol("features").setLabelCol("Murder").fit(trainingDF) // 設定管道 val pipeline = new Pipeline().setStages(Array(lr)) // 建立引數網格 val paramGrid = new ParamGridBuilder().addGrid(lr.fitIntercept).addGrid(lr.elasticNetParam, Array(0.0, 0.5, 1.0)).addGrid(lr.maxIter, Array(10, 100)).build() // 選擇(prediction, true label),計算測試誤差。 // 注意RegEvaluator.isLargerBetter,評估的度量值是大的好,還是小的好,系統會自動識別 val RegEvaluator = new RegressionEvaluator().setLabelCol(lr.getLabelCol).setPredictionCol(lr.getPredictionCol).setMetricName("rmse") val trainValidationSplit = new TrainValidationSplit().setEstimator(pipeline).setEvaluator(RegEvaluator).setEstimatorParamMaps(paramGrid).setTrainRatio(0.8) // 資料分割比例 // Run train validation split, and choose the best set of parameters. val tvModel = trainValidationSplit.fit(trainingDF) // 檢視模型全部引數 tvModel.extractParamMap() tvModel.getEstimatorParamMaps.length tvModel.getEstimatorParamMaps.foreach { println } // 引數組合的集合 tvModel.getEvaluator.extractParamMap() // 評估的引數 tvModel.getEvaluator.isLargerBetter // 評估的度量值是大的好,還是小的好 tvModel.getTrainRatio // 用最好的引數組合,做出預測 tvModel.transform(testDF).select("features", "Murder", "prediction").show()
調優程式碼執行結果
// 檢視模型全部引數 tvModel.extractParamMap() res45: org.apache.spark.ml.param.ParamMap = { tvs_5de7d3dd1977-estimator: pipeline_062a1dffe557, tvs_5de7d3dd1977-estimatorParamMaps: [Lorg.apache.spark.ml.param.ParamMap;@60298de1, tvs_5de7d3dd1977-evaluator: regEval_05204824acb9, tvs_5de7d3dd1977-seed: -1772833110, tvs_5de7d3dd1977-trainRatio: 0.8 } tvModel.getEstimatorParamMaps.length res46: Int = 12 tvModel.getEstimatorParamMaps.foreach { println } // 引數組合的集合 { linReg_75628a5554b4-elasticNetParam: 0.0, linReg_75628a5554b4-fitIntercept: true, linReg_75628a5554b4-maxIter: 10 } { linReg_75628a5554b4-elasticNetParam: 0.0, linReg_75628a5554b4-fitIntercept: true, linReg_75628a5554b4-maxIter: 100 } { linReg_75628a5554b4-elasticNetParam: 0.0, linReg_75628a5554b4-fitIntercept: false, linReg_75628a5554b4-maxIter: 10 } { linReg_75628a5554b4-elasticNetParam: 0.0, linReg_75628a5554b4-fitIntercept: false, linReg_75628a5554b4-maxIter: 100 } { linReg_75628a5554b4-elasticNetParam: 0.5, linReg_75628a5554b4-fitIntercept: true, linReg_75628a5554b4-maxIter: 10 } { linReg_75628a5554b4-elasticNetParam: 0.5, linReg_75628a5554b4-fitIntercept: true, linReg_75628a5554b4-maxIter: 100 } { linReg_75628a5554b4-elasticNetParam: 0.5, linReg_75628a5554b4-fitIntercept: false, linReg_75628a5554b4-maxIter: 10 } { linReg_75628a5554b4-elasticNetParam: 0.5, linReg_75628a5554b4-fitIntercept: false, linReg_75628a5554b4-maxIter: 100 } { linReg_75628a5554b4-elasticNetParam: 1.0, linReg_75628a5554b4-fitIntercept: true, linReg_75628a5554b4-maxIter: 10 } { linReg_75628a5554b4-elasticNetParam: 1.0, linReg_75628a5554b4-fitIntercept: true, linReg_75628a5554b4-maxIter: 100 } { linReg_75628a5554b4-elasticNetParam: 1.0, linReg_75628a5554b4-fitIntercept: false, linReg_75628a5554b4-maxIter: 10 } { linReg_75628a5554b4-elasticNetParam: 1.0, linReg_75628a5554b4-fitIntercept: false, linReg_75628a5554b4-maxIter: 100 } tvModel.getEvaluator.extractParamMap() // 評估的引數 res48: org.apache.spark.ml.param.ParamMap = { regEval_05204824acb9-labelCol: Murder, regEval_05204824acb9-metricName: rmse, regEval_05204824acb9-predictionCol: prediction } tvModel.getEvaluator.isLargerBetter // 評估的度量值是大的好,還是小的好 res49: Boolean = false tvModel.getTrainRatio res50: Double = 0.8 tvModel.transform(testDF).select("features", "Murder", "prediction").show() +--------------------+------+------------------+ | features|Murder| prediction| +--------------------+------+------------------+ |[1058.0,3694.0,0....| 2.7| 6.917232043935343| |[2341.0,3098.0,2....| 12.5|14.760329005533478| |[472.0,3907.0,0.6...| 5.5| 4.182074651181182| |[812.0,4281.0,0.7...| 3.3| 4.915905572667441| |[2816.0,3635.0,2....| 11.6|14.219231061596304| |[4589.0,4468.0,0....| 3.0| 3.483554528704758| +--------------------+------+------------------+