Sorting It All Out
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 33184 | Accepted: 11545 |
Description
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
Input
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
Output
For each problem instance, output consists of one line. This line should be one of the following three:
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sample Input
4 6 A<B A<C B<C C<D B<D A<B 3 2 A<B B<A 26 1 A<Z 0 0
Sample Output
Sorted sequence determined after 4 relations: ABCD. Inconsistency found after 2 relations. Sorted sequence cannot be determined.
Source
因為要求幾個relation,所以沒加一個進行一次topoSort
一旦遇到有環或者唯一有序就sign=1,後面的關係一定要讀完(後果自負),如果最後sign==0說明沒確定順序
要列印方案,可以用char topo[]來儲存,然而輸出topo[]比一個個輸出慢了16MS,並且還忘初始化了WA好幾次
// // main.cpp // poj1094 // // Created by Candy on 9/11/16. // Copyright © 2016 Candy. All rights reserved. // #include <iostream> #include <cstdio> #include <algorithm> #include <cstring> using namespace std; const int N=30; int n,m,ind[N],ch[N][N]; char tmp[5],topo[N]; int q[N]; int topoSort(){ int flag=2;//only sorted int indt[N]; for(int i=1;i<=n;i++) indt[i]=ind[i]; for(int i=1;i<=n;i++){//printf("%d %d %d \n",i,ind[i],ch[i][0]); int zero=0,u=0; for(int j=1;j<=n;j++) if(indt[j]==0) zero++,u=j; if(zero==0) return 1;//circle if(zero>1) flag=3;//no sorted indt[u]--; topo[i-1]=(char)u+'A'-1; q[i-1]=u; for(int j=1;j<=ch[u][0];j++) indt[ch[u][j]]--; } return flag; } int main(int argc, const char * argv[]) { while(cin>>n>>m){ if(n==0&&m==0) break; memset(ch,0,sizeof(ch)); memset(ind,0,sizeof(ind)); memset(topo,0,sizeof(topo)); int sign=0; for(int i=1;i<=m;i++){ scanf("%s",tmp); if(sign) continue; int x=tmp[0]-'A'+1,y=tmp[2]-'A'+1; ind[y]++; ch[x][++ch[x][0]]=y; int flag=topoSort(); if(flag==1){sign=1;printf("Inconsistency found after %d relations.\n",i);} if(flag==2){ sign=1;printf("Sorted sequence determined after %d relations: %s.\n",i,topo); // printf("Sorted sequence determined after %d relations: ",i); // for(int j=0;j<n;j++) // printf("%c",q[j]+'A'-1); // printf(".\n"); // sign=1; } } if(!sign) printf("Sorted sequence cannot be determined.\n"); } return 0; }