03:八進位制小數
- 總時間限制:
- 1000ms
- 記憶體限制:
- 65536kB
- 描述
-
八進位制有限小數均可以用十進位制有限小數精確地表示。比如,八進位制裡面的0.75等於十進位制裡面的0.963125 (7/8 + 5/64)。所有小數點後位數為n的八進位制小數都可以表示成小數點後位數不多於3n的十進位制小數。
你的任務是寫一個程式,把(0,1)之間的八進位制小數轉化成十進位制小數。 - 輸入
- 一行,包含一個八進位制小數。每個小數的形式是0.d1d2d3 ... dk,這裡di是八進位制數0...7,dk不等於0,而且已知0 < k < 15。
- 輸出
- 輸入如下形式的一行
0.d1d2d3...dk [8] = 0.D1D2D3...Dm [10]
這裡左邊是輸入的八進位制小數,右邊是相等的十進位制小數。輸出的小數末尾不能有0,也就是說Dm不等於0。注意空格位置。 - 樣例輸入
-
0.75
- 樣例輸出
-
0.75 [8] = 0.953125 [10]
- 來源
- 翻譯自 Southern African 2001 的試題
-
1 #include<iostream> 2 #include<cstdio> 3 #include<cmath> 4 #include<cstring> 5 using namespace std; 6 double ans; 7 char a[1001]; 8 int main() 9 { 10 double zhishu=1; 11 double fenmu; 12 gets(a); 13 int l=strlen(a); 14 for(int i=2;i<l;i++) 15 { 16 fenmu=pow(8,zhishu); 17 zhishu++; 18 ans=ans+(double)(a[i]-48)/fenmu; 19 } 20 //cout<<a<<" [8] = "<<ans<<" [10]"; 21 printf("%s [8] = %.45g [10]",a,ans); 22 return 0; 23 }