每日導數80

会飞的鱼13發表於2024-03-10

端點效應與放縮

已知函式\(f(x)=(ax^2+x+a)e^{-x}(a\in\mathbb{R})\)

(1)若\(a\geq 0\),函式\(f(x)\)的極大值為\(\dfrac{3}{e}\),求\(a\)

(2)對任意的\(a\leq 0\),\(f(x)\leq b\ln(x+1)\)\((0,+\infty)\)上恆成立,求\(b\)的取值範圍

(1)\(f^{\prime}(x)=e^{-x}(-ax^2-x-a+2ax+1)=e^{-x}\left[-ax+(1-a)\right](x-1)=0\)

\(x_1=1,x_2=1-\dfrac{1}{a}\)

Case1 當\(a=0\)時,\(f^{\prime}(x)=e^{-x}(1-x)\),得\(f(x)\)的極大值為\(f(1)=e^{-1}\)

Case2 當\(a>0\)時,\(1-\dfrac{1}{a}<1\)
,則不難得到\(f(x)\)的極大值為\(f(1)=3e^{-1}\)\(a=1\)

綜上\(a=1\)

(2)記\(F(a)=(ax^2+x+a)e^{-x}=a(x^2+1)e^{-x}+xe^{-x}\)關於\(a\)是單調遞增的

\(f(x)=F(a)\leq xe^x{-x}\)

要證:\((ax^2+x+a)e^{-x}\leq b\ln(x+1)\)

即證:$ xe^{-x}\leq b\ln(x+1)$

\(\varphi(x)=xe^{-x}-b\ln (x+1)\),\(\varphi(0)=0\)

\(\varphi^{\prime}(x)=e^{-x}(1-x)-\dfrac{b}{x+1},\varphi^{\prime}(0)=1-b\)

Case1 當\(b\geq 1\)時,\(\varphi^{\prime}(0)\leq 0\)

\(\varphi(x)\leq xe^{-x}-\ln(x+1)\)

\(\gamma(x)=xe^{-x}-\ln(x+1)\)

\(\gamma^{\prime}(x)=e^{-x}(-x+1)-\dfrac{1}{x+1}=\dfrac{1-x^2-e^x}{(x+1)e^x}<\dfrac{1-x^2-1-x-\dfrac{x^2}{2}}{(x+1)e^x}=\dfrac{-x-\dfrac{3x^2}{2}}{(x+1)e^x}<0\)

\(\gamma(x)\)單調遞減,即\(\gamma(x)\leq \gamma(0)=0\)

合題

Case2 當\(0<b<1\)時,\(\varphi^{\prime}(0)=1-b>0,\varphi^{\prime}(1)=-\dfrac{b}{2}<0\)

則由零點存在定理,存在\(x_0\)使得\(\varphi^{\prime}(x_0)=0\)

則在\((0,x_0)\)上,\(\varphi(x)\)單調遞增,即\(\varphi(x)>\varphi(0)=0\)

矛盾!,不合題

Case3 當\(b\leq0\)時,左邊極限是0,右邊極限是\(-\infty\),矛盾!

綜上\(b\geq 1\)

相關文章