非常有用的蛋白質科學工具與專案
翻譯自,github:(2015版)
蛋白配體對接與評價
AutoDock 4.2
License:free, open-source (GNU GPL)
一個使用相對廉價的"hybrid"力場的分子對接與得分工具,該力場為半經驗的方法(molecular mechanics as well as empirical terms).其預測的絕對結合自由能相較於更大的計算量專案可能精確度較低,但這種半經驗方法對於相對得分(ranking)可能更加合適。
雖然AutoDock這種半經驗力場被AutoDock Vina這個完整的基於知識的,統計得分函式的軟體所替代。同時AutoDock Vina具有更精確和更快的速度。但是AutoDock 4.2 提供了更加詳細的輸出描述可能對某些應用具有其獨有的優勢。
網址:http://autodock.scripps.edu/downloads/autodock-registration/autodock-4-2-download-page/
Huey, Ruth, Garrett M. Morris, Arthur J. Olson, and David S. Goodsell. 2007. “A Semiempirical Free Energy Force Field with Charge-Based Desolvation.” Journal of Computational Chemistry 28 (6): 1145–52. doi:10.1002/jcc.20634.
輸出例子:
Total Intermolecular Interaction Energy = -3.1862 kcal/mol
Total Intermolecular vdW + Hbond + desolv Energy = -0.2499 kcal/mol
Total Intermolecular Electrostatic Energy = -2.9362 kcal/mol
Total Intermolecular + Intramolecular Energy = -5.6314 kcal/mol
epdb: USER Estimated Free Energy of Binding = -1.40 kcal/mol [=(1)+(2)+(3)-(4)]
epdb: USER Estimated Inhibition Constant, Ki = 94.72 mM (millimolar) [Temperature = 298.15 K]
epdb: USER
epdb: USER (1) Final Intermolecular Energy = -3.19 kcal/mol
epdb: USER vdW + Hbond + desolv Energy = -0.25 kcal/mol
epdb: USER Electrostatic Energy = -2.94 kcal/mol
epdb: USER (2) Final Total Internal Energy = -2.45 kcal/mol
epdb: USER (3) Torsional Free Energy = +1.79 kcal/mol
epdb: USER (4) Unbound System's Energy [=(2)] = -2.45 kcal/mol
版本:
AutoDock 4.2 Release 4.2.5.1
AutoDock Vina
License: free, open-source (Apache license)
其為AutoDock的蛋白對接與在得分的繼承者,其可以評價結合能力以及一些獨有的專案,例如疏水貢獻以及氫鍵(PS:譯者並未發現有這些功能····)
O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, Journal of Computational Chemistry 31 (2010) 455-461
重新打分用法:
vina --config config.txt --score_only
config.txt的例子如下:
receptor = protein.pdbqt
ligand = ligand.pdbqt
center_x = -2.491 # Center of Grid points X
center_y = 30.038 # Center of Grid points Y
center_z = -10.765 # Center of Grid points Z
size_x = 25 # Number of Grid points in X direction
size_y = 25 # Number of Grid points in Y Direction
size_z = 25 # Number of Grid points in Z Direction
版本:
vina --version
AutoDock Vina 1.1.2 (May 11, 2011)
DrugScoreX
License: free without any limitations (redistribution requires permission)
DrugScoreX是一個較新的,對於蛋白配體打分具有比DrugScore更高精度的軟體,其打分功能是基於統計勢能?(statistical potentials)
網址:http://pc1664.pharmazie.uni-marburg.de/drugscore/
DSX: A Knowledge-Based Scoring Function for the Assessment of Protein–Ligand Complexes Gerd Neudert and Gerhard Klebe Journal of Chemical Information and Modeling 2011 51 (10), 2731-2745
用法:
dsx_mac_64.mac -h
...
pro_file : A pdb or mol2 file of your protein.
In pdb format metals in this file will be treated as part
of the protein. => Be sure to delete metals in the pdb file
if you want to supply some metals seperately (-M met_file)!
All other HETATMs will be ignored!
In mol2 format everything will be taken as part of the
protein. => Be sure to delete molecules you want to supply
seperately (-C, -W, -M) from the protein-mol2-file!
lig_file : A mol2- or autodock dlg-file containing all molecules that
should be scored.
...
譯者注:其可以對金屬離子進行打分
例子:
譯者注:個人覺得作者下載的是mac版本
dsx_mac_64.mac -P protein.pdb -L ligand.mol2 -D pdb_pot_0511
其中pdb_pot_0511在下載檔案中:
dsx/
ACC_DON_AnD_HYD_ARO_map.def
mac64/ # directory that contains the binaries
README.txt
pdb_pot_0511/ # potentials
LigScore
License: free, open-source (GNU GPL)
與DrugScore的演算法類似,提供本地(IMP 工具包)以及線上服務。
其得分功能具有兩種"口味",RankScore
,推薦被用於不同配體在蛋白結合介面的評分(例如虛擬篩選);PoseScore
,在設定的一系列配體疊代中尋找優化的結合構象(例如相同的具有不同方向或者構象的配體)
網址:http://salilab.org/imp/
線上網址:http://modbase.compbio.ucsf.edu/ligscore/
Fan H, Schneidman-Duhovny D, Irwin J, Dong GQ, Shoichet B, Sali A. Statistical Potential for Modeling and Ranking of Protein-Ligand Interactions. J Chem Inf Model. 2011, 51:3078-92.
使用:
ligand_score -h
Usage: ligand_score file.mol2 file.pdb [libfile]
其中protein_ligand_pose_score.lib
用來PoseScore
打分,protein_ligand_rank_score.lib
用來RankScore
打分。
示例:
ligand_score my.mol2 my.pdb /usr/local/share/IMP/atom/protein_ligand_pose_score.lib
DOCK 6 Amber Score
License: Available free of charge for academic institutions, but there is a licensing fee for industrial organizations.
DOCK 6 是一個對接工具提供了幾種打分函式,其可以用來對已經對接的構象進行再打分。下面是一個如何在打分的例子:
dock6 -h
--------------------------------------
DOCK v6.7
Released February 2015
Copyright UCSF
--------------------------------------
Usage:
dock6 -i filename.in [-o filename.out] [-v]
例子:
Amber 打分對蛋白配體複合物進行最小化,分子動力學模擬,能量最小化,更詳細的計算方法可以檢視:http://dock.compbio.ucsf.edu/DOCK_6/tutorials/amber_score/amber_score.htm
下面這個例子,我們假設一次已經進行了蛋白配體處理,例如:我們在蛋白PDB檔案中移除了配體,金屬離子和水分子,並且將組氨酸殘基進行了正確的質子化。
prepare_amber.pl lig.mol2 1a9x.pdb
接下來我們建立如下的dock.in
檔案:
ligand_atom_file lig.amber_score.mol2
limit_max_ligands no
skip_molecule no
read_mol_solvation no
calculate_rmsd no
use_database_filter no
orient_ligand no
use_internal_energy no
flexible_ligand no
bump_filter no
score_molecules yes
contact_score_primary no
contact_score_secondary no
grid_score_primary no
grid_score_secondary no
multigrid_score_primary no
multigrid_score_secondary no
dock3.5_score_primary no
dock3.5_score_secondary no
continuous_score_primary no
continuous_score_secondary no
descriptor_score_primary no
descriptor_score_secondary no
gbsa_zou_score_primary no
gbsa_zou_score_secondary no
gbsa_hawkins_score_primary no
gbsa_hawkins_score_secondary no
SASA_descriptor_score_primary no
SASA_descriptor_score_secondary no
amber_score_primary yes
amber_score_secondary no
amber_score_receptor_file_prefix 1a9x
amber_score_movable_region ligand
amber_score_minimization_rmsgrad 0.01
amber_score_before_md_minimization_cycles 100
amber_score_md_steps 3000
amber_score_after_md_minimization_cycles 100
amber_score_gb_model 5
amber_score_nonbonded_cutoff 18.0
amber_score_temperature 300.0
amber_score_abort_on_unprepped_ligand yes
ligand_outfile_prefix output
write_orientations no
num_scored_conformers 1
rank_ligands no
最後步驟,我們執行dock6
讀取dock.in
檔案
dock6 -i dock.in > dock.out
在dock.out
檔案,我們可以找到Amber 得分:
[...]
Molecule: *****
Elapsed time for docking: 34 seconds
Anchors: 1
Orientations: 1
Conformations: 1
Amber Score: -19.431744
complex: 50250.946122
receptor: -50307.949484
ligand: 37.571619
1 Molecules Processed
Total elapsed time: 41 seconds
蛋白檔案和結構處理
OpenBabel
License: free, open-source (GNU GPL)
一個格式轉換工具,具有本地編譯包和多種語言的API
O'Boyle, Noel M., Michael Banck, Craig A. James, Chris Morley, Tim Vandermeersch, and Geoffrey R. Hutchison. “Open Babel: An Open Chemical Toolbox.” J Cheminf 3 (2011): 33.
使用:
babel -H
Open Babel converts chemical structures from one file format to another
Usage: babel <input spec> <output spec> [Options]
例子:
babel -i mol2 my.mol2 -o pdbqt my.pdbqt
版本:
babel
No output file or format spec!
Open Babel 2.3.1 -- Oct 13 2011 -- 15:14:47
Reduce
License: free, but no particular license provided
一個加氫刪氫的命令列工具,僅支援PDB格式
網站:http://kinemage.biochem.duke.edu/software/reduce.php
Word, et al.(1999) "Asparagine and glutamine: using hydrogen atom contacts in the choice of sidechain amide orientation" J. Mol. Biol. 285, 1735-1747.
使用:
~/Desktop >./reduce -h
reduce: version 3.23 05/21/2013, Copyright 1997-2013, J. Michael Word
reduce.3.23.130521
arguments: [-flags] filename or -
Suggested usage:
reduce -FLIP myfile.pdb > myfileFH.pdb (do NQH-flips)
reduce -NOFLIP myfile.pdb > myfileH.pdb (do NOT do NQH-flips)
Flags:
-FLIP add H and rotate and flip NQH groups
-NOFLIP add H and rotate groups with no NQH flips
-Trim remove (rather than add) hydrogens
-NUClear use nuclear X-H distances rather than default
electron cloud distances
-NOOH remove hydrogens on OH and SH groups
-OH add hydrogens on OH and SH groups (default)
-HIS create NH hydrogens on HIS rings
-FLIPs allow complete ASN, GLN and HIS sidechains to flip
(usually used with -HIS)
...
版本:
reduce -v
reduce.3.23.130521
配體結構
由於配體結構原文中主要是介紹的OpenEye,這個要求,所以就不 翻譯了。
晶體結構分析
PyWater
一個尋找保守水分子的Pymol外掛
文件與程式碼:https://github.com/hiteshpatel379/PyWATER
質譜?(Mass Spectrometry)
ProteoWizard
一個蛋白質組學分析的圖形化和命令列分析工具
網站:http://proteowizard.sourceforge.net/index.shtml
OpenMS
一個LC/MS資料管理和分析C++工具包
網站:http://open-ms.sourceforge.net/
Marc Sturm, Andreas Bertsch, Clemens Gröpl, Andreas Hildebrandt, Rene Hussong, Eva Lange, Nico Pfeifer, Ole Schulz-Trieglaff, Alexandra Zerck, Knut Reinert, and Oliver Kohlbacher, 2008. “OpenMS – an Open-Source Software Framework for Mass Spectrometry” BMC Bioinformatics 9: 163. doi:10.1186/1471-2105-9-163.
(開發)庫
Biopython
License: free, open-source (very permissive custom license)
一個Python工具包
網站:http://biopython.org/wiki/Main_Page
中文文件:http://biopython-cn.readthedocs.io/zh_CN/latest/
scikit-bio
License: free, open-source (BSD)
一個提供多種生物科學功能,資料結構和演算法的Python包
網站:http://scikit-bio.org/
更多原創精彩視訊敬請關注生信雜談:
相關文章
- Python中非常有用的三個資料科學庫Python資料科學
- RabbitMQ專案開發實戰技巧-非常有用MQ
- 深度學習預測蛋白質-蛋白質相互作用深度學習
- 蛋白質深度學習深度學習
- 蛋白質組學知識
- Maven那些非常有用的 PluginMavenPlugin
- 4個非常有用的 Flutter 技巧Flutter
- 蛋白質(下)
- 非常有用的Linux系統操作命令Linux
- 科學的專案管理方法有哪些?專案管理
- 17個非常有用的PHP類和庫PHP
- 精確預測相分離蛋白質,同濟&中國科學院機器學習預測器PSPire機器學習
- 身體和蛋白質
- MySQL8 非常有用的一個新特性MySql
- 一個非常老但是很有用的功能-閃回
- 網上看到的“12個非常有用的JavaScript技巧”JavaScript
- 全都會!預測蛋白質標註!建立講義!解釋數學公式!最懂科學的智慧NLP模型Galactica嚐鮮 ⛵公式模型
- AI再奪諾獎!2024諾貝爾化學獎授予蛋白質計算領域三位科學家AI
- 資料科學求職建議:掌握5種型別的資料科學專案資料科學求職型別
- 推薦12款非常有用的流行 jQuery 外掛jQuery
- 最簡單易懂的laravel事件,這個功能非常的有用Laravel事件
- Java怎麼學?一些非常有用的書單和網站推薦Java網站
- 30倍於傳統方法,中國科學院團隊Transformer深度學習模型預測糖-蛋白質作用位點ORM深度學習模型
- 有用的C語言工具C語言
- Science 發文,高通量蛋白質組學和人工智慧的革命人工智慧
- Struct2Graph:基於結構的蛋白質-蛋白質相互作用預測的圖注意網路Struct
- 《非常防護》專案詳細介紹
- 比傳統方法高30倍,中國科學院團隊Transformer深度學習模型預測糖-蛋白質作用位點ORM深度學習模型
- 蛋白質語言模型綜述模型
- 跨學科工具箱(2) - 熵與熱力學重要模型熵模型
- 六西格瑪對什麼型別的專案有用?型別
- 本週Github上資料科學Python有趣專案Github資料科學Python
- 工作中那些有用的工具
- Python科學工具筆記Python筆記
- 專案質量管理
- MIT教授Tomaso Poggio演講與專訪:智慧背後的科學與工程MIT
- 正所謂「飽暖思淫慾」,這種蛋白質竟是“催情藥”!Nature揭秘從麵包到愛情的科學機制
- 如何上傳蛋白質組資料
- 一個非常好的行為驗證碼專案!