技巧用全的雙變數問題
已知函式\(f(x)=\dfrac{a(x+1)}{e^x}+\ln x\)
(1)若\(f(x)\)是單調遞增的,求\(a\)的範圍
(2)若\(f(x)\)有兩個極值點(\(x_1>x_2>0\)),證明:\(a(x_1^2+x_2^2)>2\sqrt{e}\)
解
(1)\(f(x)=a(x+1)e^{-x}+\ln x,f^{\prime}(x)=-axe^{-x}+\dfrac{1}{x}\geq 0\)
即\(a\leq e^{-x}<1\)
(2)由(1)\(f^{\prime}(x)=-axe^{-x}+\dfrac{1}{x}\),即
\(\begin{cases} \dfrac{1}{x_1}=ax_1e^{x_1}\\ \dfrac{1}{x_2}=ax_2e^{x_2} \end{cases}\),做比有\(\dfrac{x_2}{x_1}=\dfrac{x_1}{x_2}e^{x_1-x_2}\),做乘整理有\((ax_1x_2)^2=e^{-(x_1+x_2)}\)
記\(\dfrac{x_2}{x_1}=t\),則\(x_2=x_1t\),則有\(t=\dfrac{e^{x_1(1-t)}}{t}\)
則\(t^2=e^{x_1(1-t)}\),即\(2\ln t=x_1(1-t)\)
即\(x_1=\dfrac{2\ln t}{1-t}\),則\(x_2=\dfrac{2t\ln t}{1-t }\)
因\(a(x_1^2+x_2^2)>2ax_1x_2\)
則要證:\(a(x_1^2+x_2^2)>2\sqrt{e}\)
即證:\(ax_1x_2>\sqrt{e}\)
即證:\((ax_1x_2)^2>e\)
即證:\(e^{-(x_1+x_2)}>e\)
即證:\((x_1+x_2)<-1\)
即證:$ \dfrac{2\ln t}{1-t}+\dfrac{2t\ln t}{1-t
}<-1$
即證:\(2\ln t+2t\ln t-t+1>0,t>1\)恆成立
記\(\varphi(t)=2\ln t+2t\ln t-t+1>0,\varphi^{\prime}(t)=\dfrac{2}{t}+2\ln t+1>0\)
則\(\varphi(t)\)單調遞增,\(\varphi(t)>\varphi(1)=0\)
得證!