POJ 2991 Crane
題意:給定一個垂直的挖掘機臂。有n段,如今每次操作能夠旋轉一個位置,把[s, s + 1]專程a度,每次旋轉後要輸出第n個位置的座標
思路:線段樹。把每一段當成一個向量,這樣每一段的座標就等於前幾段的座標和,然後每次旋轉的時候,相當於把當前到最後位置所有加上一個角度,這樣就須要區間改動了。然後每次還須要查詢s,和s + 1當前的角度,所以須要單點查詢,這樣用線段樹去維護就可以
程式碼:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int N = 10005;
const double PI = acos(-1.0);
#define lson(x) ((x<<1)+1)
#define rson(x) ((x<<1)+2)
int n, m;
double COS[721], SIN[721];
struct Node {
int l, r, lazy, R;
double x, y;
void gao(int ang) {
R = (R + ang) % 360;
lazy = (lazy + ang) % 360;
double tmpx = x, tmpy = y;
x = COS[ang + 360] * tmpx - SIN[ang + 360] * tmpy;
y = SIN[ang + 360] * tmpx + COS[ang + 360] * tmpy;
}
} node[N * 4];
void pushup(int x) {
node[x].x = node[lson(x)].x + node[rson(x)].x;
node[x].y = node[lson(x)].y + node[rson(x)].y;
}
void pushdown(int x) {
if (node[x].lazy) {
node[lson(x)].gao(node[x].lazy);
node[rson(x)].gao(node[x].lazy);
node[x].lazy = 0;
}
}
void build(int l, int r, int x = 0) {
node[x].l = l; node[x].r = r; node[x].lazy = node[x].R = 0;
if (l == r) {
double tmp;
scanf("%lf", &tmp);
node[x].x = 0.0;
node[x].y = tmp;
return;
}
int mid = (l + r) / 2;
build(l, mid, lson(x));
build(mid + 1, r, rson(x));
pushup(x);
}
void add(int l, int r, int v, int x = 0) {
if (node[x].l >= l && node[x].r <= r) {
node[x].gao(v);
return;
}
int mid = (node[x].l + node[x].r) / 2;
pushdown(x);
if (l <= mid) add(l, r, v, lson(x));
if (r > mid) add(l, r, v, rson(x));
pushup(x);
}
int query(int v, int x = 0) {
if (node[x].l == node[x].r)
return node[x].R;
int mid = (node[x].l + node[x].r) / 2;
int ans = 0;
pushdown(x);
if (v <= mid) ans += query(v, lson(x));
if (v > mid) ans += query(v, rson(x));
pushup(x);
return ans;
}
int main() {
int bo = 0;
for (int i = -360; i <= 360; i++) {
COS[i + 360] = cos(i / 180.0 * PI);
SIN[i + 360] = sin(i / 180.0 * PI);
}
while (~scanf("%d%d", &n, &m)) {
if (bo) printf("\n");
else bo = 1;
build(1, n);
int s, a;
while (m--) {
scanf("%d%d", &s, &a);
int a1 = query(s);
int a2 = query(s + 1);
int ang = ((a1 - a2 + a + 180) % 360 + 360) % 360;
add(s + 1, n, ang);
printf("%.2lf %.2lf\n", node[0].x, node[0].y);
}
}
return 0;
}