圖注 9:不同最佳化策略的記憶體和 SM 利用率。 透過 GPU 指標可以看出(圖 8,圖 9)量化策略透過提升 IO 同時降低計算的方式提高整體計算效能;迴圈展開透過大幅度降低 I/O 同時提高計算密度的方式提高計算效能。 2.2.3 計算精度 團隊統計了加速前與加速後的結果誤差,模擬的膜電位 V 的時程差別 < 2 ms (0.6%),模電位平均誤差為 0.72mV (0.4%),均滿足生理準確度要求。最佳化前後主要離子通道的模擬曲線吻合(如圖 10 所示)。
圖注 10:模擬前後細胞主要離子通道電流與胞內離子濃度在一心律節拍間的變化。 3 總結 智源研究院從心臟模型的解剖結構、心肌細胞電生理的計算特點及計算系統的硬體架構出發,設計了心臟模擬系統的資料結構和最佳化策略,以提高計算效率。團隊採用先進的並行處理方法,充分利用現代 GPU 裝置的強大計算能力,最佳化資料傳輸和通訊方式,以減少延遲並提高資料吞吐量。透過這些策略,不僅提升了模擬系統的計算速度,還保證了在可接受誤差範圍內的計算精度,最終成功實現了心臟模擬的實時計算目標,達到超實時計算結果。這一成果為進一步研究心律失常產生的離子通道與分子機制等關鍵醫學問題,也為手術規劃如房顫射頻消融方案等臨床應用,以及新藥研發與其心臟安全性篩選奠定了堅實基礎,同時也為其它超大複雜物理系統的實時模擬提供堅實基礎。 參考文獻 1. Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve [J]. The Journal of Physiology, 1952, 117 (4): 500-544.2. Noble D. Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations.[J]. Nature, 1960, 188 (4749): 495-497.3. Crampin E J , Halstead M , Hunter P , et al. Computational physiology and the physiome project [J]. Experimental Physiology, 2004, 89.4. Smaill B, Hunter P. Structure and function of the diastolic heart: material properties of passive myocardium [M]//Theory of heart. Springer New York, 1991: 1-29.5. Alday E A P, Colman M A, Langley P, Zhang H. Novel non-invasive algorithm to identify the origins of re-entry and ectopic foci in the atria from 64-lead ECGs: A computational study [J]. PLoS Computational Biolog. 2017, 13 (3): e1005270.6. Boyett M R, Li J, Inada S, et al. Imaging the heart: computer three-dimensional anatomical models of the heart [J]. Journal of Electrocardiology, 2005.7. Nordsletten D, Niederer S, Nash M P, et al. Coupling multi-physics models to cardiac mechanics [J]. Progress in Biophysics & Molecular Biology, 2011, 104 (1): 77-88.8. Colman M A, Aslanidi O V, Kharche S, et al. Pro‐arrhythmogenic effects of atrial fibrillation‐induced electrical remodelling: insights from the three‐dimensional virtual human atria [J]. The Journal of physiology, 2013, 591 (17): 4249-4272.9. Wang W, Xu L, Cavazos J, Huang HH, Kay M. Fast acceleration of 2D wave propagation simulations using modern computational accelerators. PLoS One. 2014;9 (1):e86484.10. Kaboudian A, Cherry EM, Fenton FH. Real-time interactive simulations of large-scale systems on personal computers and cell phones: Toward patient-specific heart modeling and other applications. Sci Adv. 2019;5 (3):eaav6019.11. Garcia-Molla VM, Liberos A, Vidal A, Guillem MS, Millet J, Gonzalez A, et al. Adaptive step ODE algorithms for the 3D simulation of electric heart activity with graphics processing units. Comput Biol Med. 2014;44:15-26.12.Sachetto Oliveira R, Martins Rocha B, Burgarelli D, Meira W, Jr., Constantinides C, Weber Dos Santos R. Performance evaluation of GPU parallelization, space-time adaptive algorithms, and their combination for simulating cardiac electrophysiology. Int J Numer Method Biomed Eng. 2018;34 (2).