嵌入式Linux驅動筆記(十)------通俗易懂式分析瞭解i2c框架

風箏丶發表於2017-09-06

你好!這裡是風箏的部落格,

歡迎和我一起交流。

瞭解i2c框架時,在別的部落格看到一張圖,非常好,引用如下:
i2c描述

其中,i2c_client是具體的裝置例項,是通過i2c匯流排連線到i2c_adapter的。無論是什麼i2c裝置,都可以通過i2c_adapter來訪問i2c匯流排,i2c_adapter遮蔽了底層i2c匯流排控制時序,向上層提供一個統一的介面。
以kernel4.8.17為例:
在mach-smdk2440.c檔案,

static struct platform_device *smdk2440_devices[] __initdata = {
    &s3c_device_ohci,
    &s3c_device_lcd,
    &s3c_device_wdt,
    &s3c_device_i2c0,
    &s3c_device_iis,
    &smdk2440_device_eth,
};

static void __init smdk2440_map_io(void)
{
    s3c24xx_init_io(smdk2440_iodesc, ARRAY_SIZE(smdk2440_iodesc));
    s3c24xx_init_uarts(smdk2440_uartcfgs, ARRAY_SIZE(smdk2440_uartcfgs));
    samsung_set_timer_source(SAMSUNG_PWM3, SAMSUNG_PWM4);
}

static void __init smdk2440_machine_init(void)
{
    s3c24xx_fb_set_platdata(&smdk2440_fb_info);
    s3c_i2c0_set_platdata(NULL);

    platform_add_devices(smdk2440_devices, ARRAY_SIZE(smdk2440_devices));
    smdk_machine_init();
}

smdk2440_map_io函式裡,呼叫s3c24xx_init_io函式:

void __init s3c24xx_init_io(struct map_desc *mach_desc, int size)
{
    arm_pm_idle = s3c24xx_default_idle;

    /* initialise the io descriptors we need for initialisation */
    iotable_init(mach_desc, size);
    iotable_init(s3c_iodesc, ARRAY_SIZE(s3c_iodesc));

    if (cpu_architecture() >= CPU_ARCH_ARMv5) {
        samsung_cpu_id = s3c24xx_read_idcode_v5();
    } else {
        samsung_cpu_id = s3c24xx_read_idcode_v4();
    }

    s3c_init_cpu(samsung_cpu_id, cpu_ids, ARRAY_SIZE(cpu_ids));

    samsung_pwm_set_platdata(&s3c24xx_pwm_variant);
}

其中有s3c_init_cpu(samsung_cpu_id, cpu_ids, ARRAY_SIZE(cpu_ids)),
引數cpu_ids是:

static struct cpu_table cpu_ids[] __initdata = {
    /*太多了,省略......*/
    {
        .idcode     = 0x32440000,
        .idmask     = 0xffffffff,
        .map_io     = s3c2440_map_io,
        .init_uarts = s3c244x_init_uarts,
        .init       = s3c2440_init,
        .name       = name_s3c2440
    },
    /*太多了,省略......*/

繼續跟蹤s3c_init_cpu函式

void __init s3c_init_cpu(unsigned long idcode,
             struct cpu_table *cputab, unsigned int cputab_size)
{
    cpu = s3c_lookup_cpu(idcode, cputab, cputab_size);

    if (cpu == NULL) {
        printk(KERN_ERR "Unknown CPU type 0x%08lx\n", idcode);
        panic("Unknown S3C24XX CPU");
    }

    printk("CPU %s (id 0x%08lx)\n", cpu->name, idcode);

    if (cpu->init == NULL) {
        printk(KERN_ERR "CPU %s support not enabled\n", cpu->name);
        panic("Unsupported Samsung CPU");
    }

    if (cpu->map_io)
        cpu->map_io();
}

就是最後一行,會呼叫map_io函式,即前面的s3c2440_map_io函式

void __init s3c2440_map_io(void)
{
    s3c244x_map_io();
    s3c24xx_gpiocfg_default.set_pull = s3c24xx_gpio_setpull_1up;
    s3c24xx_gpiocfg_default.get_pull = s3c24xx_gpio_getpull_1up;
}

進入s3c244x_map_io函式

void __init s3c244x_map_io(void)
{
    /* register our io-tables */
    iotable_init(s3c244x_iodesc, ARRAY_SIZE(s3c244x_iodesc));
    /* rename any peripherals used differing from the s3c2410 */
    s3c_device_sdi.name  = "s3c2440-sdi";
    s3c_device_i2c0.name  = "s3c2440-i2c";
    s3c_nand_setname("s3c2440-nand");
    s3c_device_ts.name = "s3c2440-ts";
    s3c_device_usbgadget.name = "s3c2440-usbgadget";
    s3c2410_device_dclk.name = "s3c2440-dclk";
}

這裡,即是把s3c_device_i2c0結構體的名字改為了”s3c2440-i2c” !!!
好了,回到文章最開頭的mach-smdk2440.c檔案,看下smdk2440_machine_init函式,
裡面會通過s3c_i2c0_set_platdata函式,設定default_i2c_data結構體的bus_num為0,以及設定i2c的IO口:npd->cfg_gpio = s3c_i2c0_cfg_gpio;
接著就會呼叫platform_add_devices(smdk2440_devices, ARRAY_SIZE(smdk2440_devices));在platform平臺下進行裝置註冊,裝置名字為”s3c2440-i2c”

有了platform-device,自然有driver
在i2c-s3c2410.c檔案:

static const struct platform_device_id s3c24xx_driver_ids[] = {
    {
        .name       = "s3c2410-i2c",
        .driver_data    = 0,
    }, {
        .name       = "s3c2440-i2c",
        .driver_data    = QUIRK_S3C2440,
    }, {
        .name       = "s3c2440-hdmiphy-i2c",
        .driver_data    = QUIRK_S3C2440 | QUIRK_HDMIPHY | QUIRK_NO_GPIO,
    }, { },
};

static struct platform_driver s3c24xx_i2c_driver = {
    .probe      = s3c24xx_i2c_probe,
    .remove     = s3c24xx_i2c_remove,
    .id_table   = s3c24xx_driver_ids,
    .driver     = {
        .name   = "s3c-i2c",
        .pm = S3C24XX_DEV_PM_OPS,
        .of_match_table = of_match_ptr(s3c24xx_i2c_match),
    },
};

static int __init i2c_adap_s3c_init(void)
{
    return platform_driver_register(&s3c24xx_i2c_driver);
}

可以看到,s3c24xx_driver_ids裡是有”s3c2440-i2c”的,所以能和之前的device匹配成功,呼叫probe函式:

static int s3c24xx_i2c_probe(struct platform_device *pdev)
{
    /*太長了,部分省略......*/
    strlcpy(i2c->adap.name, "s3c2410-i2c", sizeof(i2c->adap.name));
    i2c->adap.owner = THIS_MODULE;
    i2c->adap.algo = &s3c24xx_i2c_algorithm;
    i2c->adap.retries = 2;
    i2c->adap.class = I2C_CLASS_DEPRECATED;
    i2c->tx_setup = 50;
    /* setup info block for the i2c core */
    i2c->adap.algo_data = i2c;
    i2c->adap.dev.parent = &pdev->dev;
    i2c->pctrl = devm_pinctrl_get_select_default(i2c->dev);

    i2c->adap.nr = i2c->pdata->bus_num;
    i2c->adap.dev.of_node = pdev->dev.of_node;

    platform_set_drvdata(pdev, i2c);
    pm_runtime_enable(&pdev->dev);
    ret = i2c_add_numbered_adapter(&i2c->adap);
}

這裡主要注意兩個地方:
一是:i2c->adap.algo = &s3c24xx_i2c_algorithm;
這裡的s3c24xx_i2c_algorithm是:

/* i2c bus registration info */
static const struct i2c_algorithm s3c24xx_i2c_algorithm = {
    .master_xfer        = s3c24xx_i2c_xfer,
    .functionality      = s3c24xx_i2c_func,
};

還記得文章開始的那張圖嗎?
i2c_adapter和i2c_algorithm 都是操作i2c bus的結構體,前者定義一個i2c模組,後者定義操作模組的方法。(或者理解為:i2c_adapter對應於物理上的一個介面卡,而i2c_algorithm對應一套通訊方法。)
這裡就是i2c_algorithm!!
i2c的底層實現函式,進行封裝好,
.master_xfer 用於i2c匯流排傳輸,傳遞給它的i2c_msg陣列中每個I2C訊息。
.functionality 用於返回algorithm所支援的通訊協議,如I2C_FUNC_I2C、I2C_FUNC_10BIT_ADDR、I2C_FUNC_SMBUS_READ_BYTE、I2C_FUNC_SUMBUS_WRITE_BYTE等。

二是:ret = i2c_add_numbered_adapter(&i2c->adap);
這就是i2c_adapter了,進去看下函式實現:

int i2c_add_numbered_adapter(struct i2c_adapter *adap)
{
    if (adap->nr == -1) /* -1 means dynamically assign bus id */
        return i2c_add_adapter(adap);

    return __i2c_add_numbered_adapter(adap);
}
static int __i2c_add_numbered_adapter(struct i2c_adapter *adap)
{
    int id;

    mutex_lock(&core_lock);
    id = idr_alloc(&i2c_adapter_idr, adap, adap->nr, adap->nr + 1, GFP_KERNEL);
    mutex_unlock(&core_lock);
    if (WARN(id < 0, "couldn't get idr"))
        return id == -ENOSPC ? -EBUSY : id;

    return i2c_register_adapter(adap);
}

即最後呼叫i2c_register_adapter(adap)函式,在i2c_bus匯流排上註冊,名字為:
dev_set_name(&adap->dev, “i2c-%d”, adap->nr);
這裡說下i2c_adapter與i2c_client的關係:i2c_client依附於i2c_adapter,由於一個介面卡上可以連線多個I2C裝置,所以一個i2c_adapter也可以被多個i2c_client依附,i2c_adapter中包含依附於它的i2c_client的連結串列。

.

好咯,i2c框架差不多就是這樣咯,我們以一個kernel裡的例子來看下:
at24.c函式:

static struct i2c_driver at24_driver = {
    .driver = {
        .name = "at24",
        .acpi_match_table = ACPI_PTR(at24_acpi_ids),
    },
    .probe = at24_probe,
    .remove = at24_remove,
    .id_table = at24_ids,
};

static int __init at24_init(void)
{
    if (!io_limit) {
        pr_err("at24: io_limit must not be 0!\n");
        return -EINVAL;
    }

    io_limit = rounddown_pow_of_two(io_limit);
    return i2c_add_driver(&at24_driver);
}

這裡呼叫i2c_add_driver函式在i2c_bus匯流排下注冊,然後看下他的讀寫函式,以讀函式為例:

static ssize_t at24_eeprom_read_i2c(struct at24_data *at24, char *buf,
                    unsigned int offset, size_t count)
{
    unsigned long timeout, read_time;
    struct i2c_client *client;
    struct i2c_msg msg[2];
    int status, i;
    u8 msgbuf[2];

    memset(msg, 0, sizeof(msg));
    client = at24_translate_offset(at24, &offset);

    if (count > io_limit)
        count = io_limit;
    i = 0;
    if (at24->chip.flags & AT24_FLAG_ADDR16)
        msgbuf[i++] = offset >> 8;
    msgbuf[i++] = offset;

    msg[0].addr = client->addr;
    msg[0].buf = msgbuf;
    msg[0].len = i;

    msg[1].addr = client->addr;
    msg[1].flags = I2C_M_RD;
    msg[1].buf = buf;
    msg[1].len = count;

    loop_until_timeout(timeout, read_time) {
        status = i2c_transfer(client->adapter, msg, 2);
        if (status == 2)
            status = count;

        dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
                count, offset, status, jiffies);

        if (status == count)
            return count;
    }

    return -ETIMEDOUT;
}

裡面就是會呼叫到i2c_transfer函式了,函式裡面以i2c_msg(即I2C訊息)為單位通訊,i2c_transfer函式裡又會呼叫到__i2c_transfer函式:

int __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
{
    unsigned long orig_jiffies;
    int ret, try;

    if (adap->quirks && i2c_check_for_quirks(adap, msgs, num))
        return -EOPNOTSUPP;
    if (static_key_false(&i2c_trace_msg)) {
        int i;
        for (i = 0; i < num; i++)
            if (msgs[i].flags & I2C_M_RD)
                trace_i2c_read(adap, &msgs[i], i);
            else
                trace_i2c_write(adap, &msgs[i], i);
    }
    /* Retry automatically on arbitration loss */
    orig_jiffies = jiffies;
    for (ret = 0, try = 0; try <= adap->retries; try++) {
        ret = adap->algo->master_xfer(adap, msgs, num);
        if (ret != -EAGAIN)
            break;
        if (time_after(jiffies, orig_jiffies + adap->timeout))
            break;
    }

    if (static_key_false(&i2c_trace_msg)) {
        int i;
        for (i = 0; i < ret; i++)
            if (msgs[i].flags & I2C_M_RD)
                trace_i2c_reply(adap, &msgs[i], i);
        trace_i2c_result(adap, i, ret);
    }

    return ret;
}

就是這裡,裡面實現:ret = adap->algo->master_xfer(adap, msgs, num);
這就是之前說的i2c_algorithm 裡實現的.master_xfer函式裡,實現i2c匯流排傳輸函式。

相關文章